

Version 4 November 20, 2009

PHASE II REMEDIAL INVESTIGATION WORK PLAN

FORMER PLAINWELL, INC. MILL PROPERTY PLAINWELL, MICHIGAN

NOVEMBER 2009 REF. NO. 56394 (2) This report is printed on recycled paper. Prepared by: Conestoga-Rovers & Associates

261 Martindale Rd., Unit #3 St. Catharines, Ontario Canada L2W 1A2

Office: 905•682•0510 Fax: 905•682•8818

TABLE OF CONTENTS

			<u>Page</u>
10	INTROD	UCTION	1
- 0	11	REMEDIAL INVESTIGATION/FEASIBILITY STUDY OBJECTIVES	1
20	BACKGR	OUND	4
	2 1	HISTORICAL MILL OPERATIONS	4
	211	HISTORICAL OWNERSHIP AND OPERATIONS	4
	212	AERIAL PHOTOGRAPHS	5
	213	WASTEWATER TREATMENT	6
	214	HAZARDOUS SUBSTANCES	7
	215	WASTE STORAGE AND DISPOSAL	8
30	CURREN	T CONDITIONS AND HISTORICAL LAND USE	9
	31	PHYSICAL SETTING	9
	311	SITE TOPOGRAPHY AND DRAINAGE	10
	312	SITE GEOLOGY	10
	32	SOIL CHARACTERIZATION	10
	321	PRE RI SOIL INVESTIGATION SITE CHARACTERIZATION	11
	322		13
	33	GROUNDWATER CHARACTERIZATION	1 4
	331	PRE RI GROUNDWATER INVESTIGATION SITE	
		CHARACTERIZATION	15
	332	PHASE I RI GROUNDWATER CHARACTERIZATION	16
	34	LOCATION AND CHARACTER OF POTENTIAL SOURCES	17
	35	EXPOSURE PATHWAYS ANALYSIS	18
	351	HUMAN HEALTH CONCEPTUAL SITE MODEL	19
	352	CONCEPTUAL SITE MODEL (CSM) FOR THE	
		ECOLOGICAL RISK ASSESSMENT	21
	3521	CURRENT AND POTENTIAL RECEPTORS TO BE EVALUATED	22
40		AL DATA GAPS	24
	41	FORMER WASTEWATER SLUDGE DEWATERING LAGOON AND	
		AERATION BASIN AREA (AREA 1)	24
	42	MILL BUILDING AREA (AREA 2)	25
	43	NORTH CENTRAL PORTION OF THE SITE (AREA 3)	25
	431	FORMER QUALITY PRODUCTS AND SLUDGE	
		DEWATERING BUILDING (AREA 3A)	26
	432	FORMER SPECIALTY MINERALS INC (AREA 3B)	26
	433	FORMER COAL PILE STORAGE (AREA 3C)	26
	434	NO 6 FUEL TANK AREA (AREA 3D)	26
	435	FORMER COAL STORAGE TUNNEL (AREA 3E)	27
	436	BACKGROUND INFORMATION	27

TABLE OF CONTENTS (Continued)

			<u>Page</u>
50	PHASE	E II REMEDIAL INVESTIGATION	28
	51	SAMPLING PROGRAM	28
	511	SOIL SAMPLING PROGRAM	29
	512	GROUNDWATER SAMPLING	30
	513	VERTICAL AQUIFER SAMPLING	30
	514	QUALITY ASSURANCE/ QUALITY CONTROL SAMPLES	31
	5 2	ON-SITE BUILDINGS	32
	53	FORMER WASTEWATER SLUDGE DEWATERING LAGOON AND)
		AERATION BASIN AREA (AREA 1)	32
	54	MILL BUILDING AREA (AREA 2)	35
	55	NORTH CENTRAL PORTION OF THE SITE (AREA 3)	37
	551	NON SPECIFIC AREAS (AREA 3 GENERAL)	37
	552	FORMER QUALITY PRODUCTS AND SLUDGE	
		DEWATERING BUILDINGS (AREA 3A)	38
	553	FORMER SPECIALTY MINERALS INC (AREA 3B)	39
	5 5 4	FORMER COAL PILE STORAGE (AREA 3C)	39
	555	NO 6 FUEL TANK AREA (AREA 3D)	39
	556	FORMER COAL STORAGE TUNNEL (AREA 3E)	4 0
60	PROJEC	CT SCHEDULE	42
70	REFERI	ENCES	43

LIST OF FIGURES (Following Text)

FIGURE 11	SITE LOCATION MAP
FIGURE 1 2	SITE PLAN
FIGURE 3 1	AREA 1- SAMPLE LOCATIONS
FIGURE 3 2	AREA 2 SAMPLE LOCATIONS
FIGURE 33	AREA 3 SAMPLE LOCATIONS
FIGURE 3 4	HUMAN HEALTH CONCEPTUAL SITE MODEL
FIGURE 35	ERA CONCEPTUAL SITE MODEL
FIGURE 5 1	SITE WIDE PROPOSED PHASE II SAMPLE LOCATIONS
FIGURE 5 2	AREA 1 – PROPOSED PHASE II SAMPLE LOCATIONS
FIGURE 53	AREA 1 – WOODED AREA PROPOSED SAMPLE LOCATIONS
FIGURE 5 4	AREA 2 – PROPOSED PHASE II SAMPLE LOCATIONS
FIGURE 5 5	AREA 3 – PROPOSED PHASE II SAMPLE LOCATIONS
FIGURE 6 1	PHASE II RI PROJECT SCHEDULE
	<u>LIST OF TABLES</u> (Following Text)
TABLE 5 1	AREA 1 REMEDIAL INVESTIGATION APPROACH
TABLE 5 2	AREA 2 REMEDIAL INVESTIGATION APPROACH
TABLE 53	AREA 3-REMEDIAL INVESTIGATION APPROACH
TABLE 5 4	REMEDIAL INVESTIGATION APPROACH NOTES

LIST OF APPENDICES

APPENDIX A	AERI	AERIAL PHOTOGRAPHS		
APPENDIX B	HIST	ORICAL BOREHOLE LOGS		
APPENDIX C	SOIL	ANALYTICAL DATA		
	C 1	SOIL SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES		
	C 2	SOIL DATA SUMMARY - VOCs		
	C 3	SOIL DATA SUMMARY - SVOCs AND PAHs		
	C 4	SOIL DATA SUMMARY - METALS		
	C 5	SOIL DATA SUMMARY - PCBs AND PETROLEUM PRODUCTS		
APPENDIX D	GRO	UNDWATER ANALYTICAL DATA		
	D1	GROUNDWATER SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES		
	D 2	GROUNDWATER DATA SUMMARY - VOCs		
	D3	GROUNDWATER DATA SUMMARY - SVOCs AND PAHs		
	D4	GROUNDWATER DATA SUMMARY - PCBs		
	D5	GROUNDWATER DATA SUMMARY - METALS		

LIST OF ACRONYMS

AMSL Above mean sea level
AST Aboveground Storage Tank
bgs Below Ground Surface

CERCLA Comprehensive Environmental Response Compensation and Liability Act

CRA Conestoga-Rovers & Associates

CSM Conceptual Site Model
DRO Diesel range organics
ERA Ecological Risk Assessment

FS Feasibility Study

FSP Multi-Area Field Sampling Plan

GRO Gasoline range organics

GSI Groundwater Surface Water Interface

LFP Low Flow Purging

MDEQ Michigan Department of Environmental Quality

MS/MSDs Matrix spike/ matrix spike duplicates

NCP National Oil and Hazardous Substance Pollution Contingency Plan

PAH Polyaromatic hydrocarbons PCBs Polychlorinated Biphenyls

PCE Tetrachloroethene

PID Photoionization Detector

PPE Personal Protective Equipment

ppm Parts per million

QAPP Quality Assurance Project Plan QA/QC Quality Assurance/ Quality Control

RI Remedial Investigation RRD Redevelopment Division

SPLP Synthetic Precipitation Leaching Procedure

SOW Statement of Work

SVOC Semi volatile organic compound

TAL Target Analyte List
TCL Target Compound List

TPH Total petroleum hydrocarbons TSCA Toxic Substances Control Act

U S EPA United States Environmental Protection Agency

USGS United Sates Geological Survey
UST Underground Storage Tank
VAS Vertical Aquifer Sampling
VOC Volatile Organic Compounds
WWTP Waste Water Treatment Plant

10 INTRODUCTION

This Phase II Remedial Investigation (RI) Work Plan for the former Plainwell Inc Mill Property (Site) located at 200 Allegan Street, Plainwell, Michigan, has been prepared by Conestoga-Rovers & Associates (CRA) on behalf of Weyerhaeuser Company (Weyerhaeuser) for submittal to the United States Environmental Protection Agency (U S EPA) Region 5 The Phase II RI Work Plan is being submitted in accordance with Statement of Work (SOW) for the Remedial Investigation and Feasibility Study and the terms of the Consent Decree for the Design and Implementation of Certain Response Actions at Operable Unit #4 and the Plainwell, Inc Mill Property of the Allied Paper Inc /Portage Creek/Kalamazoo River Superfund Site (Consent Decree), which became effective February 22 2005 The Site location is presented on Figure 1.1

As approved by the US EPA on August 6 2008, the RI is being implemented in a phased approach. This Phase II RI Work Plan has been prepared to address the remaining RI field sampling and analysis activities, consisting of a soil and supplemental groundwater investigation which are required to complete the RI pursuant to the SOW to address the remaining data gaps. The aim of the Phase II RI is to confirm historical exceedances and perform soil and groundwater investigations where information is currently not available or reliable. As a result, this Phase II RI Work Plan forms part of a multi-volume work plan for the Site which includes three separate parts.

- RI/FS Work Plan
- The Phase I Groundwater and Coal Tunnel Assessment Work Plan
- This Phase II RI Work Plan

As identified in this document, further additions to the proposed Phase II RI Work Plan are expected. Inspections of various areas including the mill buildings need to be conducted before the RI is deemed complete. All additional investigations will be submitted to the U.S. EPA for approval once inspection activities have occurred and will be included as part of the Phase II RI.

11 REMEDIAL INVESTIGATION/FEASIBILITY STUDY OBJECTIVES

The overall objective of the RI/FS Work Plan is to provide a scope of work to identify and investigate any environmental concerns regarding prior use of the Site. As outlined in the SOW. The purpose of the RI program is to provide the data necessary to evaluate current

and potential risks to human health and ecological receptors As provided in the SOW the objectives of the RI/FS for the Site are as follows

- To determine the nature and extent of the contamination to assess risk and support development and evaluation of remedial alternatives – Collect the data necessary to adequately characterize the nature and extent of contamination at the Site, consistent with the requirements of the National Oil and Hazardous Substance Pollution Contingency Plan (March 8 1990) (NCP) and the Consent Decree
- **To evaluate potential risk** Assess any current and potential risks to human health or the environment caused by the release or threatened release of hazardous substances, pollutants, or contaminants at or from the Site
- To develop and evaluate remedial alternatives Develop and evaluate alternatives, consistent with reasonably anticipated future land use(s) at the Site, for remedial action to prevent mitigate, control or eliminate risks posed by any release or threatened release of historical contaminants present at or from the Site

The specific objectives of the Phase II RI Work Plan investigation are to

- Perform a supplemental groundwater investigation, developed based on the results of the Phase I RI groundwater investigation to further evaluate the nature and extent of impacts to groundwater and their potential sources
- Further assess shallow site-specific hydrogeologic characteristics and interconnections with the Kalamazoo River
- Perform soil investigations in the former wastewater sludge and dewatering lagoon and aeration basin area, the area of the mill buildings, and the north central portion of the Site, and undeveloped land areas to adequately characterize the nature and extent of impacts to soil in the unsaturated zone that may have occurred due to historical operations at the Site

To facilitate the evaluation of the Site related information as part of the RI, the Site has been divided into three areas based on their locations and noted historical environmental impacts. The three areas are the as follows

- Area 1 Former wastewater sludge dewatering lagoons and aeration basin area
- Area 2 Mill buildings area
- Area 3 North central portion area

A layout of the Site showing the boundaries of the three areas is provided on Figure 1 2 As defined in the Consent Decree, Mill Operation and Maintenance shall not include any operation and maintenance of any portion of the Mill Property if any located between the top of the banks of the Kalamazoo River and the middle of the Kalamazoo River stream bed. Any operation and maintenance of such river banks and adjacent stream bed sediments will be addressed as part of the remedial action to be developed by EPA for the Kalamazoo River Operable Unit. (United States District Court Western District of Michigan Southern Division, 2005) Therefore, the Site includes areas up to the top of the Kalamazoo River bank Area associated with the Kalamazoo River (i.e. beyond the top of the riverbank and mill race) are not included in the scope of the RI/FS and are being addressed in a separate submittal as part of the river remedial activities

20 BACKGROUND

The following subsections provide a brief overview of pertinent background information to support the scope of work for Phase II RI investigation activities outlined in this report. A complete summary of the Site history and background can be found in the Remedial Investigation/Feasibility Study Work Plan, Operable Unit No 6 of the Allied Paper, Inc /Portage Creek/Kalamazoo River Superfund Site Plainwell Mill, Plainwell Michigan September 2006 prepared by RMT, Inc on behalf of Weyerhaeuser

21 HISTORICAL MILL OPERATIONS

The Site has been subject to many historical reports outlining historical operations including previous Phase I and Phase II Environmental Site Investigations which have been reviewed in previous reporting to the U.S. EPA. These documents are discussed below and are referenced to in Section 7.0

The historical information indicates that various activities took place at the Site. The buildings and activities include support buildings, paper mill operations, on Site parking, wastewater treatment waste storage, containment of coal, containment of fuel oils, containment of hydraulic oils, and general manufacturing related activities. To aid in the manufacturing and treatment processes, Former Quality Products sludge Dewatering Building, and Specialty Mineral Inc. buildings, developed materials used to support operations. These operations were located on the south central portion of the Site in Area 3.

211 HISTORICAL OWNERSHIP AND OPERATIONS

Within Area 2 the papermaking operations began as early as 1884 and continued until Site closure in 2000. During this time period ownership was passed between various organizations, including Weyerhaeuser who owned and operated the mill for approximately nine years (1961 to 1970). After bankruptcy was filed by the Simpson Plainwell Paper Company in 2000 the City of Plainwell purchased the property on August 31, 2006 with the objective of redeveloping the Site. A summary of previous owners is provided below.

Dates (approximate)	Property Ownership
(at least) 1884	Lyon Paper Mıll
1891 to 1956	Michigan Paper Company
1956 to 1961	Hamilton Paper Company

Dates (approximate)	Property Ownership
1961 to 1970	Weyerhaeuser Company
1970 to 1985	Phillip Morris (operated the Nicolet Paper Company)
1985 to 1987	Chesapeake Corporation
1987 to 2000	Simpson Plainwell Paper Company
2006 to present	City of Plainwell

212 <u>AERIAL PHOTOGRAPHS</u>

Historical aerial photographs of the Site obtained between 1947 and 2005 and are presented in Appendix A. The aerial photographs were reviewed from this time period to identify the changes in land use and Site conditions over the period of photographic coverage with primary emphasis placed on changes in topography. The photographs indicate development of the Site over the time period reviewed which is consistent with historical reporting. The following is a summary of the photographs reviewed.

- The 1947 photograph of the Site is unclear The majority of the property remains undeveloped and wooded
- In the 1955–1957 and 1965 photographs of the Site, the mill buildings complex primary clarifier, wastewater dewatering lagoons and Plainwell wastewater treatment plant were identified. The majority of the property remained undeveloped and wooded
- The 1967 photograph of the Site indicates the development of the secondary clarifier aeration basin, and the railroad near the mill buildings
- The 1973 and 1974 photographs indicate trees had been cleared and residential properties were developed to the southwest of the mill buildings
- In the 1991 photograph of the Site, the addition of sludge dewatering facility to the northwest of the mill buildings is identified
- The 1999 photograph indicates the presence of the Specialty Minerals Inc building
- The 2005 photograph of the Site is representative of current Site conditions

The aerial photographs reviewed do not indicate that development has occurred within the wooded area located southwest of the lagoon areas. The aerial photographs of the undeveloped lands (southern parking lots and area beside mill race) do not indicate evidence that would suggest the potential for any historical environmental impacts

Due to the limited quality of the aerial photos Weyerhaeuser is in the process of obtaining and reviewing Sandborn Fire Insurance Maps for the Site Once reviewed,

further sampling maybe proposed to the US EPA for review and approval and included as part of the Phase II RI field activities

2 1 3 WASTEWATER TREATMENT

According to historical documentation prior to installation of the clarifier wastewater produced during papermaking processes was discharged directly into the Kalamazoo River, without any treatment. Wastewater treatment commenced at the Site in 1954, and improved as wastewater treatment methods developed. Between 1954 and 1967 wastewater treatment was carried out through a primary clarifier that was constructed northwest of the mill buildings and a number of wastewater sludge dewatering lagoons on the northwest portion of the Site, as presented on Figure 1.2. After treatment of wastewater in the primary clarifier, the clarifier effluent was discharged into Kalamazoo River and the clarifier underflow was discharged into the lagoons for further dewatering. The dewatered sludge in each lagoon was excavated and transported off-Site to the 12 Street Landfill Site in Otsego Michigan (RMT 2006).

In 1967 wastewater treatment at the Site developed to include a 185 million gallon plastic lined aeration basin and a secondary clarifier, collectively referred to herein as the secondary clarifier located west of the lagoons, as presented on Figure 12 (RMT, 2006) The primary clarifier's effluent passed through an aeration basin prior to discharge to Kalamazoo River and biosludges from the aeration basins along with the primary clarifier underflow were discharged to the dewatering lagoons. The dewatered sludge continued to be excavated and transported off-Site for disposal at the 12 Street Landfill Site (RMT 2006)

From 1981 until termination of operations at the Site in 2000 a new wastewater treatment facility, consisting of a new primary clarifier, a mechanical dewatering system a new secondary clarifier and an activated sludge treatment system was constructed. The primary clarifier and wastewater sludge dewatering lagoons were replaced with the new primary clarifier and a mechanical dewatering system respectively. The new secondary clarifier and an activated sludge treatment system were constructed over several of the eastern lagoons (i.e., Lagoons D, E, and G) and the old primary clarifier was removed. The removal of the dewatered sludge from the dewatering lagoons continued across the Site and between 1981 and 1983, most of the reminder of the residuals in the lagoons were removed and transported off-Site for disposal or consolidated in western lagoons and covered with soil (RMT, 2006). In 1983, the former aeration system was taken out of service and partially backfilled. The general location of the new wastewater treatment system is shown on Figure 1.2.

214 HAZARDOUS SUBSTANCES

Based on the existing Site information, several Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) regulated hazardous substances were used, generated, and/or stored during the paper manufacturing operations

Coal and Fly Ash

Coal was used for steam generation for papermaking operations and according to the historical aerial photographs of the Site the north central portion of the Site (i.e., Area 3C) was used as coal storage area. Fly ash generated as a by-product of the combustion of coal in the boiler was mixed with wastewater sludge in the lagoons before off Site sludge disposal. The coal products may contain metals and polycyclic aromatic hydrocarbons (PAHs) at various concentrations, depending on its origin. The resulting fly ash contains organic compounds and metals as noted in historical sampling.

Additives for the Papermaking Process

Additives, such as support products from the Specialty Minerals Inc. were employed during the papermaking process, along with cleaning products and petroleum products. Several paper machine additives felt and wire cleaning products containing volatile organic compounds (VOCs) and semi-volatile organic compound (SVOCs) were used during papermaking process at the Site. There were several on Site aboveground and underground storage tanks (ASTs/USTs) containing petroleum products such as No. 6 Fuel Oil, gasoline, diesel and kerosene

Wastewater Sludge

Wastewater sludge was created during the papermaking processes on Site. The sludge was removed from the facility and processed through a series of clarifiers before entering the former wastewater lagoons for dewatering. Once the paper sludge was dewatered, the material was then removed from the Site. In the late 1950s and early 1960s paper that was deinked and recycled at the mill may have included carbonless copy paper containing polychlorinated biphenyls (PCBs). De-inking was discontinued at the mill in 1963. The U.S. EPA's Technical and Procedural Amendments to the Toxic Substances Control Act (TSCA) Regulations indicates that the potential for PCBs present within the wastewater sludge would not be regulated under the TSCA.

Electrical Equipment and Hydraulic Lubricants

Some fluids used in electrical equipment (e.g., transformers and capacitors), as well as hydraulic fluids, commonly contained PCBs—As documented in the previous reports for the Site., PCBs were historically used in transformers (seven removed) capacitors (41)

	ł
removed), and in the hydraulic fluids of five elevators inside the mill buildings (fluids have been removed and disposed of)	{
215 <u>WASTE STORAGE AND DISPOSAL</u>	{
The potentially regulated waste generated at the Site included used oil spent solvents (prior to 1994) and wastewater sludge (RMT 2006). All known disposal activities have been discussed above and landfilling activities are not known to have occurred on-Site.	[
PCBs that may be present in the wastewater sludge on-Site as discussed in Section 2.1.4	
	[
	[
	[
	[
	[
	[
	[
	[
	[
	[
	ſ

30 CURRENT CONDITIONS AND HISTORICAL LAND USE

31 PHYSICAL SETTING

The Site is located in the southeast ¼ of the northeast ¼ Section 30 Town 1N Range 11W in the City of Plainwell Allegan County Michigan as presented on Figure 1.1 The property address is 200 Allegan Street, Plainwell, Michigan and is currently zoned industrial

To the north, the Kalamazoo River borders the Site As defined in the Consent Decree and discussed in Section 1.1 the Site is defined to the top of the river bank. The Site is bordered by the Mill Race to the east. Further east are the Plainwell central business units. The Site is bordered to the south by Allegan Road and further south by residential properties. The Site is bordered to the west by mixed residential and commercial property and the City of Plainwell wastewater treatment plant (WWTP)

In a study completed in 1996 the following buildings were noted to be present on-Site (RMT, 1996)

- The former mill buildings, located on the eastern side of the property (approximately 526 000 square feet of former production and office space)
- The Former Specialty Minerals Inc facility located near Allegan Street, which the Simpson Plainwell Paper Company formerly leased to Pfizer for the production of precipitated calcium carbonate to be used at the mill (approximately 45 000 square feet)
- The Former Quality Products property located near the central portion of the Site which included a 3,100 square feet former retail store and a 3 100 square feet metal storage building
- The former mill wastewater treatment building located on the western portion of the Site

The following is a summary of other structures located on-Site

- Two 50,000 gallons water towers
- One 200,000 gallon No 6 Fuel Oil AST and containment structures
- The former on Site WWTP structures including a primary clarifier, two secondary clarifiers and an activated sludge aeration tank

The Site buildings and structures are presented on Figure 12

311 SITE TOPOGRAPHY AND DRAINAGE

The Site topography is generally flat and gently sloping towards the north to the Kalamazoo River and to the east towards the Mill Race Based on the United States Geological Survey (USGS) 7.5 minute topographic map for the area (Otsego Michigan, 7.5 minute quadrangle) and aerial topography for the Site the range in surface elevation is from 720 to 730 feet above mean sea level (AMSL)

312 SITE GEOLOGY

Regional information for the area as noted in historical reporting indicates that unconsolidated glacial deposits extend to a depth of 150 feet below ground surface (bgs), where bedrock shale of the lower Mississippian age (Coldwater Formation) is present (RMT 2006)

Due to the proximity to the Kalamazoo River, unconsolidated sand and gravel is present at depths ranging from approximately 702 feet AMSL to an unknown depth. Various locations of the property have been excavated for use as wastewater lagoons or other holding areas, therefore the current Site conditions may vary

Soil boring logs for the various investigative soil borings and monitoring wells installed at the Site are presented in Appendix B

3 2 SOIL CHARACTERIZATION

A number of investigations have been conducted at the Site beginning as early as 1996 A summary of historical soil data from the previous investigations up to and including the Phase I RI soil sampling at the Site, is presented in Appendix C. Figures 3.1 to 3.3 present the associated sampling locations in Areas 1, 2, and 3, respectively. The data set has been screened against the Michigan Act 451. Part 201 Generic Cleanup Criteria as referenced by the Michigan Department of Environmental Quality (MDEQ) Remediation and Redevelopment Division (RRD). Operational Memorandum No. 1. updated January 23, 2006 (Part 201 Criteria) for the following exposure pathways.

- Statewide Default Background (as applicable)
- Residential Drinking Water Protection
- Industrial and Commercial Drinking Water Protection
- Groundwater Surface Water Interface (GSI) Protection
- Soil Volatilization to Indoor Air Inhalation

• Direct Contact Industrial and Commercial II Levels These screening criteria were selected to identify areas that require further investigation and to determine specific exposure pathways for screening of the historical data. The presented assessment in this Phase II RI Work Plan is not intended to be a final screening of the Site data (i.e., inclusion of the residential levels will be included as part of the RI report) Table C 1 provides a summary of the screening criteria used and a statistical summary of the data that exceeds the Part 201 screening criteria. Tables C 2 through C 5 provide summaries of the available soil analytical data. The following subsections provide a discussion of the data. For the purposes of this discussion the data has been divided into pre RI soil investigations (i.e., 2007 and earlier) and the RI soil investigations (i.e., 2008 data).

Exceedances of the GSI criteria are noted at Sample #2 for 1 2 4-trimethylbenzene and o-xylene. An exceedance of the industrial and commercial drinking water criterion is noted at Sample #2 for benzene. A solitary exceedance of naphthalene is noted at SB 6 at a depth of 0 to 1 feet bgs of the GSI criteria. An exceedance of the residential industrial and commercial drinking water Levels is noted at SBA 3A for tetrachloroethene (PCE)

SVOCs and PAH

Exceedances of the GSI Levels are noted at sampling locations Sample #2 and Sample #3 for naphthalene and/or phenanthrene

TPH

Sampling conducted for total petroleum hydrocarbons (TPH) occurred in June 1999 at location 93374, located in Area 3D. The only detected concentration was for TPH-Non-Polar Material-SGT HEM at a concentration of 0 264 mg/kg.

PCBs

Exceedances of the Direct Contact Industrial and Commercial II Levels for PCBs are noted at sample location SB-3 at sample depths of 2 to 25 feet bgs and 4 to 5 feet bgs. This sample was taken just south of the Former Fuel Oil Tank #6 Selected locations (TW3 and TW6) were chosen for Synthetic Precipitation Leaching Procedure (SPLP) testing for PCBs. No SPLP-PCBs were detected in any of the samples

<u>Metals</u>
Exceedances of metals are noted at various locations as summarized below

Sample ID	Location	Criteria	Parameter Exceedance
Lagoon J 3A		Residential Industrial and	Arsenic
-	Area 1	Commercial Drinking Water	
Lagoon M- 1B	7	Residential Industrial and	Arsenic
•	.	Commercial Drinking Water	
BK5 (2 5 3 ft)		Residential Industrial and	Arsenic
	Area 2	Commercial Drinking Water	
BK5 (2 5 3 ft)	7	Statewide Background	Mercury
		Residential Industrial and	Arsenic
		Commercial Drinking Water	
DG3 (0 1 5 ft)		Statewide Background	Mercury
•	1	Residential Industrial and	
	Area 3	Commercial Drinking Water	
	7	Residential Industrial and	Arsenic
DG4 (0-1 5 ft)		Commercial Drinking Water	
		Statewide Background	Total Chromium Lead
			Mercury
		Statewide Background	Total Chromium
SB-1 (12 5 13 ft)		Residential Industrial and	Arsenic
		Commercial Drinking Water	
	1	Statewide Background	Mercury
SB 3 (2 2 5 ft)		Residential Industrial and	Arsenic
		Commercial Drinking Water	
		Statewide and GSI	Total Chromium
SB-4 (9 10 ft)	Area 3D	Statewide and GSI	Selenium
SB-5 (2 5 3 5 ft)]	Statewide Background	Mercury
		Residential Industrial and	Arsenic
		Commercial Drinking Water	
SB 7 (0 0 5 ft)	7	Statewide Background	Mercury
SB 7 (7 7 5 ft)	1	Statewide Background	Total Chromium
, ,		All Criteria	Mercury
SB 2 (9 10 ft)	1	Statewide and GSI	Selenium

³D Former Fuel Oil Tank Area

3 2 2 PHASE I RI SOIL CHARACTERIZATION

In 2008 soil sampling was conducted during the completion of the assessment of the former Coal Storage Tunnel and completion of Phase I RI activities. The RI soil sampling to date focused on test pitting in Area 2 to determine if any conveyances exist from the mill buildings to the Kalamazoo River and assessment of the former Coal Storage Tunnel. The following is a summary of the analytical data generated from the 2008 RI activities in comparison to the selected Part 201 Criteria.

VOCs

Sampling for VOCs was conducted at select test pitting locations No exceedances of the screening criteria were noted

SVOCs and PAH

Sampling for SVOCs was conducted at CTP-4 and the test pits located along the soil lines towards the former Coal Storage Tunnel and the Kalamazoo River respectively Exceedances of the Direct Contact Industrial and Commercial II criterion are noted for benzo(a)pyrene at CTP-4 Exceedances of the GSI criteria are noted for fluoranthene and phenathrene at TP-18 and CPT-4 respectively

TPH

Sampling for TPH compounds was conducted at selected test pitting locations. The analytical results generated indicated elevated TPH compounds of extractable diesel range organics (DRO) at all sampled locations. Further detections of purgeable gasoline range organics (GRO) are also noted.

PCBs

Sampling for PCBs was conducted along the soil lines to the former Coal Storage Tunnel and in various test pitting locations. No PCBs exceeded any of the selected Part 201 Criteria.

Metals

In November and December 2008 metals sampling was conducted at various test pitting locations and around the lines connecting to the former Coal Storage Tunnel A summary of the exceedances are presented below

Sample ID	Location	Criteria	Parameter Exceedance
		Residential Industrial and	Total Chromium
TP 5 (6 ft bgs)		Commercial Drinking Water GSI	[
_		Criteria	<u> </u>
		GSI	Mercury Selenium
		Residential Industrial and	Arsenic

Sample ID	Location	Criteria	Parameter Exceedance
TP 17 (7 ft bgs)		Commercial Drinking Water	
	Area 2	GSI	Mercury Selenium
		Residential Industrial and	Arsenic cadmium total
TP 18 (8 ft bgs)		Commercial Drinking Water	chromium
		GSI	Mercury Selenium
		Residential Industrial and	Arsenic
TP 19 (8 ft bgs)		Commercial Drinking Water	
		GSI	Mercury Selenium
		Residential Industrial and	Arsenic
TP 20 (6 ft bgs)		Commercial Drinking Water	
]	GSI	Mercury
	Area 2	Residential Industrial and	Arsenic
	1	Commercial Drinking Water	
TP 20 (8 5 ft bgs)		Residential Industrial and	Mercury
	1	Commercial Drinking Water GSI	
		GSI	Selenium
	Area 3	Residential Industrial and	Arsenic
CPT 4		Commercial Drinking Water	
		GSI Criteria	Selenium

33 GROUNDWATER CHARACTERIZATION

A number of investigations have been conducted at the Site beginning as early as 1996 A summary of historical groundwater data from the previous investigations up to and including the Phase I RI groundwater sampling at the Site, are presented in Appendix D The data set has been screened against the Part 201 Criteria for the following exposure pathways

- Residential and Commercial I Drinking Water
- Industrial and Commercial II, III IV Drinking Water
- GSI
- Groundwater Contact

Table D 1 provides a summary of the groundwater screening criteria used and a statistical summary of the data that exceeds the Part 201 screening criteria. Tables D 2 through D 5 provide a summary of the available groundwater analytical data. The following subsections provide a discussion of the data. Similar to the soil data, the groundwater discussion has been divided into pre-RI soil investigations (i.e., 2007 and earlier) and the RI soil investigations (i.e., 2008 data).

PRE RI GROUNDWATER INVESTIGATION SITE CHARACTERIZATION

VOCs

No VOCs were detected in groundwater analyzed at the Site above the laboratory method detection limit, or if detected were below the applicable Part 201 generic industrial commercial drinking water criteria groundwater contact criteria and/or GSI criteria

SVOCs and PAHs

No PAHs were detected in groundwater analyzed at the Site above the laboratory method detection limit or if detected were below the applicable Part 201 generic industrial-commercial drinking water criteria groundwater contact criteria and/or GSI criteria

PCBs

No PCBs were detected in groundwater analyzed at the Site above the laboratory method detection limit

Metals

Exceedances of metals are noted above the applicable Part 201 generic groundwater industrial-commercial drinking water criteria, groundwater contact criteria and/or groundwater GSI criteria for arsenic, cadmium, chromium total lead, and mercury Given the limited groundwater data availability from historical sampling activities, it is difficult to develop a constructive characterization of the Site groundwater based on this data set. However several of the metals parameters observed in the Site groundwater samples are naturally occurring and may be related to background.

Arsenic was observed in one temporary well within Area 1 (i.e., Lagoon L) above the applicable Part 201 generic groundwater industrial commercial drinking water criteria Cadmium was observed at a temporary well in Area 2 above the above the applicable Part 201 generic groundwater industrial-commercial drinking water criteria Chromium (total) was observed at temporary wells and the monitoring wells in Area 3 and Area 3D in exceedance of the applicable Part 201 generic groundwater GSI criteria Lead was observed at two temporary wells at Area 2 above the applicable Part 201 generic groundwater criteria industrial commercial drinking water criteria. Mercury was observed at one temporary well in Area 2 in exceedance of the applicable Part 201 generic groundwater GSI criteria.

3 3 2 PHASE I RI GROUNDWATER CHARACTERIZATION

A preliminary groundwater investigation was conducted between December 8, 2008 and December 18, 2008 in accordance with the approved Phase I Plainwell Mill RI/FS Work Plan Twelve monitoring wells were installed at locations shown on Figure 3 1 to 3 3 for their respective areas, and groundwater samples were collected for the analysis of Target Compound List (TCL) VOCs TCL SVOCs PCBs Target Analyte List (TAL) metals and cyanide

The generated groundwater analytical data are presented in Appendix D in Tables D 1 to D 5

VOCs

With the exception of acetone and chloromethane no VOCs were detected above the laboratory method detection limit. Acetone and chloromethane were detected at monitoring locations MW-3 in Area 2 and MW-12 in Area 1 respectively at concentrations below applicable Part 201 generic residential and industrial-commercial drinking water criteria, groundwater GSI criteria and groundwater direct contact criteria.

SVOCs

With the exception of bis(2-ethylhexyl)phthalate and benzoic acid, no SVOCs were detected above the laboratory method detection limit. Bis(2 ethylhexyl)phthalate was detected at one monitoring well (i.e. MW-12) in Area 1 and benzoic acid was detected in groundwater at all monitoring locations at concentrations below applicable Part 201 generic groundwater criteria residential and industrial-commercial drinking water criteria groundwater GSI criteria, and groundwater direct contact criteria

PCBs

PCBs were not detected in any of the groundwater samples collected

Metals and Cyanide

Several metals, including aluminum, arsenic, cyanide, iron, lead, manganese and mercury were detected in Site groundwater samples at concentrations exceeding the generic Part 201 Criteria. The RI groundwater characterization is not complete at this time and further sampling, both of existing monitoring wells and of additional well locations is necessary to complete the Site groundwater characterization model. It should be noted that the majority of metals parameters detected in Site groundwater during the RI sampling are naturally occurring. The presence of these parameters in Site groundwater may be related to background and not due to Site related activities.

16

Aluminum was observed at MW-3 in Area 2 above the applicable Part 201 generic groundwater criteria industrial commercial drinking water criteria. Arsenic was observed at monitoring locations MW 7 in Area 3 and MW 12 in Area 1 above the applicable Part 201 generic groundwater criteria industrial-commercial drinking water criteria. Iron was observed at monitoring locations MW 3 in Area 2, MW-11 in Area 1 and MW 12 in Area 1 above the applicable Part 201 generic groundwater criteria. Industrial Commercial drinking water criteria. With the exception of two monitoring locations (i.e., MW-1 and MW 6), manganese was in exceedance at all monitoring locations across the Site Mercury was observed at monitoring locations MW-2 MW-3, MW-4, MW-5, in Area 2, and MW-7 in Area 3 at concentrations in exceedance of the applicable Part 201 generic groundwater GSI criteria. Cyanide was observed at monitoring wells MW-5 in Area 2 MW-7 in Area 3 MW-10, MW 11, and MW 12 in Area 1 at concentrations above the GSI criteria.

34 LOCATION AND CHARACTER OF POTENTIAL SOURCES

The pre RI and RI data collected to date suggest that the potential source of impacts are localized within the three areas at the Site and are associated with historical land uses

<u>Area 1 - Former Lagoon and Wastewater Treatment Area</u>

Historical land uses of this area included the treatment and dewatering of wastewater sludge prior to off-Site disposal. The area includes fourteen former wastewater sludge dewatering lagoons (i.e., Lagoons A through L) primary clarifier, former secondary clarifier, former wastewater treatment building activated sludge tank, former aeration basin secondary clarifier, and activated sludge treatment system

With the exception of the detection of arsenic in Lagoon M and Lagoon J within the historical soil sampling, no exceedances of the Part 201 Criteria were noted at other locations investigated at this area

Groundwater analytical results indicate that groundwater in this area of the Site contains metals and cyanide at levels above Part 201 Criteria, however further evaluation relative to background levels is required

Area 2 - Plainwell Mill Building

This area includes the former primary clarifier mill buildings, and two water towers. The primary clarifier was constructed northwest of the mill buildings and treated wastewater from the mill buildings. Prior to 1967, the effluent of the clarifier discharged to the Kalamazoo River and the underflow discharged to the dewatering lagoons. By introduction of secondary clarifier and aeration basin in 1967, the effluent of former

primary clarifier was processed through the aeration basin and then into the secondary clarifier before being discharged to the Kalamazoo River The underflow of both the former primary and secondary clarifier was discharged into the dewatering lagoons Suspected areas relating to historical operations within the mill buildings are also considered as potential source areas

Soil characterization data indicates exceedances around the former transformer area Limited sampling has been conducted on the south and east side of the buildings Limited groundwater data has been collected from this area. There is no groundwater data available for the southeastern portion of the Site

Area 3 - Central Portion of the Site

This area included the former Quality Products building (Area 3A), the Specialty Mineral Inc building (Area 3B) the former coal pile storage (Area 3C) the 200 000-gallon No 6 fuel oil AST (Area 3D) former Coal Storage Tunnel (Area 3E) and the remainder of the areas located in central portion of the Site (Area 3)

There was no historical sampling conducted or information available for the former Quality Products building and the Specialty Mineral building. Further investigations need to be completed in these two areas to determine any potential sources of impacts

Historical sampling of the former Coal Storage Tunnel and the No 6 fuel oil AST indicate both areas are potential sources of impact. As noted, soil analytical data has indicated exceedances of metals at both locations and SVOCs within the area surrounding the AST. Limited groundwater analytical data were available.

3 5 EXPOSURE PATHWAYS ANALYSIS

The potential human and ecological receptors that may be exposed to Site impacts depend strongly upon the current and anticipated Site land use. The Site is currently closed and fenced to pedestrian and vehicular traffic. The planned future use of the Site involves mixed commercial/residential/recreational land use.

Based on the current and anticipated future use of the Site potential exposure pathways for human and ecological receptors to Site impacts are identified below. Sections 3 5 1 and 3 5 2 present the human and ecological exposure pathways analyses respectively

351 HUMAN HEALTH CONCEPTUAL SITE MODEL

In order to evaluate the significance of the impacted media at the Site, the potential pathways by which individuals may come in contact with these media must be determined. The combination of factors (chemical source, media of concern, release mechanisms, and potential receptors) that could produce a complete exposure pathway and lead to human uptake of chemicals at the Site are assessed in what is defined as a Conceptual Site Model (CSM). The human health CSM identifies all potentially complete exposure pathways at the Site, and is summarized on Figure 3.4.

As the nature and extent of the contamination at the Site has not been fully defined, the CSM was developed based on the assumption that impacts, both volatile and non-volatile could exist in both soil and groundwater. Air is also considered a potentially impacted medium based on the potential for vapor and particulate release into ambient air and indoor air. Note that surface water and sediment are not present on-Site, and off-Site surface water and sediment in the Kalamazoo River and Mill Race are being evaluated under a separate report. Thus surface water and sediment are not considered herein, as indicated in Figure 3.4

The Site is currently closed and fenced, thus the only potential current receptor is a trespasser. The projected land use of the Site is mixed commercial/residential/recreational use thus the potential future receptors include a construction/utility worker, commercial worker, resident, and recreational visitor. A trespasser is also included as an additional potential future receptor since depending on the development of commercial areas at the Site, a future trespasser may also need to be evaluated in these areas. The trespasser would be an adolescent that occasionally gains access to the Site via trespassing. The construction/utility worker would be an adult conducting excavations potentially extending to the water table, such as would occur during the installation/maintenance of subsurface utilities. The commercial worker would be an adult working primarily indoors (and possibly a limited amount outdoors) at the Site. The resident is considered a child from 0 to 6 years old, and subsequently an adult, and is assumed to occupy a residential building on the Site. The recreational visitor is considered a child from 0 to 6 years old, and subsequently an adult, and is assumed to visit the recreational areas developed at the Site.

The projected land use for the Site (i.e., mixed commercial/residential/recreational use in an urban setting) is compatible with deed restrictions limiting groundwater use Although it is highly likely these restrictions will be sought for the property, this

pathway will be quantitatively evaluated and is included in the CSM for the resident potential future receptor pathway

The CSM shown on Figure 3.4 presents a summary of the potential exposure media, exposure pathways exposure routes, and exposed receptors at the Site. The following media and potential human exposures (i.e. complete pathways) have been identified for the Site.

1 Current Condition

- Dermal contact with surface soil by trespassers Incidental ingestion of surface soil by trespassers
- Inhalation of airborne particulate and ambient air vapors originating from surface soil by trespassers
- Inhalation of ambient air vapors originating from groundwater by trespassers

2 Future Condition

- Dermal contact with soil by construction/utility workers, commercial workers, residents recreational visitors and trespassers
- Incidental ingestion of soil by construction/utility workers, commercial workers residents recreational visitors, and trespassers
- Inhalation of airborne particulate and ambient air vapors originating from soil by construction/utility workers, commercial workers residents, recreational visitors, and trespassers
- Ingestion of, dermal contact with and inhalation of vapors from groundwater by residents using groundwater for potable use
- Inhalation of ambient air vapors originating from groundwater by construction/utility workers commercial workers residents recreational visitors, and trespassers
- Inhalation of indoor air vapors originating from soil and groundwater by commercial workers and residents
- Dermal contact with groundwater by construction/utility workers
- Inhalation of airborne vapors originating from pooled groundwater within an excavated trench by construction/utility workers

Note that is it assumed that during Site redevelopment, subsurface soil could be brought to the surface thus no distinction is made between surface and subsurface soil under future conditions

3 5 2 CONCEPTUAL SITE MODEL (CSM) FOR THE ECOLOGICAL RISK ASSESSMENT

For risk to occur, ecological receptors much be exposed or have complete exposure pathways to Site related chemicals at concentrations above thresholds that cause impacts. The description of complete exposure pathways from contaminated media to ecological receptor, is called a Conceptual Site Model (CSM). Development of a CSM is critical to planning the Ecological Risk Assessment (ERA). The CSM helps determine which chemicals in which media could potentially be impacting biota. The CSM also identifies which biota and biological communities could potentially be impacted and by describing the specific exposure pathways how these biota are exposed to the Site related chemicals. Based on the results of previous sampling and review of the Site's ecological setting today and likely in the future potentially complete exposure pathways between Site-related contaminants and ecological receptors were identified. The resulting CSM for the ERA is depicted in Figure 3.5.

Currently complete exposure pathways are assumed to exist from chemicals in surface soils to ecological receptors (Figure 3.5)—In general ecological risk assessments focus on soil contaminants in the top 1 foot or less. Guidance from British Columbia and Texas both recommend the top 6 inches of soil should be sampled to assess impacts to plants and soil invertebrates and their predators/herbivores (BC 2001 TNRCC 2001)—Suter (2007) recommends the top foot for ecological risk assessment. Soil samples of the top 1 foot are being evaluated for the human health risk assessment, so the ERA will use these samples as the basis for assessing ecological risks of soil related contaminants.

Note that two Site specific factors could disrupt the exposure pathways from chemicals in surface soils to ecological receptors impermeable surfaces and lack of habitat. Much of the Site is currently paved or under buildings and based on current plans, will likely remain so into the future. Exposure pathways to surface soils in these areas are currently incomplete and likely to be incomplete in the future. Other nearby areas are not covered with paving or buildings, but these areas are highly disturbed or managed vegetation (e.g., lawns and ornamental plantings) that have little habitat value. Given this disturbance, exposure pathways from surface soil to biota may also be functionally incomplete (EPA 1997). At the same time, future land use at the Site is currently somewhat uncertain. Therefore, to be conservative, exposure pathways between ecological receptors and surface soils will be considered complete, as shown in the CSM, until plans for future development solidify

Exposure pathways from chemicals in soil horizons deeper than 1 foot bgs are considered functionally incomplete (Figure 35) Although some vertebrates burrow

56394 (2)

deeper than 1 foot into the ground (e.g. see discussions in Ohio EPA (2003) and California DTSC (1998)), their exposure to contaminants in deep soils is primarily due to incidental soil ingestion from grooming and inhalation. These are generally very minor exposure pathways¹ compared to exposure via chemicals in the diet (Beyer et al. 1994).

As described in Section 351 no surface water or surface sediments occur on the Site Off-Site surface water and sediment in Kalamazoo River and Mill Race could have been impacted by releases from the Site but these are being evaluated with a separate report. Thus no surface water and sediment data are available for this ERA and these media will not be considered in the ERA.

However the RI will collect data on groundwater and the potential ecological risks of current groundwater inputs to the Kalamazoo River and Mill Race will be considered Although ecological receptors are not generally directly exposed to undiluted groundwater, aquatic organisms will be exposed to groundwater once it discharges to nearby surface waters. Thus complete exposure pathways currently exist from groundwater to various aquatic biota. Moreover if the chemicals bioaccumulate readily, semi aquatic predators of the aquatic biota could be secondarily exposed via the food chain (Figure 3.5). These exposure pathways will be considered in the ERA.

3 5 2 1 CURRENT AND POTENTIAL RECEPTORS TO BE EVALUATED

Based on guidance (e.g. EPA 1997) and the ERA CSM presented above, the following assessment endpoints and exposure pathways are appropriate. When appropriate the sentinel species are listed. Assuming that sufficient terrestrial habitat exists currently and in the future, the following assessment endpoints will be considered for species potentially exposed, directly or via the food chain to chemicals in soil

- Health of vermivorous wildlife (shrew and robin) foraging at the site
- Health of terrestrial herbivores (meadow vole and mourning dove) resident to the Site
- Health of top carnivores (red fox and red tailed hawk) foraging at the Site

¹ Incidental soil ingestion can be a significant source of exposure for worm-eating species (Beyer et al. 1994). However in this case, the incidentally consumed soil is primarily from the soil in the worms themselves. Soil eating worms are found primarily in surficial soils, so the soil in these worms, which is incidentally ingested by worm eaters, is primarily surface soil, not deep soil.

7	
	In addition, the following assessment endpoints will be considered when considering the potential risks of groundwater
	 Health of benthic organisms inhabiting off-Site open waters Health of water column species inhabiting off-Site open waters
	If groundwater has ecologically significant concentrations of bioaccumulative compounds (e.g. mercury and PCBs) the following assessment endpoint will consider potential toxic effects further up the aquatic food chain
	Health of semi-aquatic predators (great blue heron and mink) feeding on biota from on-Site surface water
U N	
	SCORATO CONFESTORA POVEDE & ASSOCIATES

40 POTENTIAL DATA GAPS

4 1 FORMER WASTEWATER SLUDGE DEWATERING LAGOON AND AERATION BASIN AREA (AREA 1)

Although many samples have been taken in this area, the focus has been on locating the paper sludge waste within the lagoons rather then delineating the extent of the buried residuals and any potential areas of contamination. Although the amount of residuals appears to be minimal the full extent of buried paper residuals is unknown. Review of the available soil borings from the lagoons indicates the variability of the currently detected layers of ash and debris found in these areas. This is due in part to information only collected from one location with the estimated lagoon within boundaries rather then from the estimated boundaries of the lagoon areas. Further sampling to determine the limits of paper sludge and potential impacts located in the former Lagoon Areas is needed. Impacts around the former aeration basin are unknown as no historical sampling has been conducted in this area. These in conjunction with the areas adjacent to the lagoons need to be investigated to identify potential impacts associated with any historical increases and decreases of the size of the lagoon areas.

After a review of the aerial photos and historical reporting the large wooded area located to the southwest of the lagoon area has not been developed over time and no historical sampling has occurred within this area

Minimal groundwater analytical data have been collected for this area. Temporary monitoring wells were installed in Lagoon L located on the northern side of the lagoon area. In 2008 three monitoring wells, MW-10 MW-11 and MW-12 were installed to determine the groundwater chemistry along the river system. Only one sampling event has occurred at these locations where detections were noted, therefore, in order to confirm any detection, further sampling should be conducted. No analytical data was available to characterize the groundwater located within the lagoon areas. Groundwater sampling of the potential contaminants within the residual layer would allow for comparison to boundary groundwater wells and confirm the overburden hydraulic conditions of the Site.

Further, no investigations have been conducted within the intermediate and deep groundwater flow systems. Further characterization of the intermediate and deep groundwater flow systems need to be conducted to confirm no impacts exist.

24

4 2 MILL BUILDING AREA (AREA 2)

Until 2008 minimal sampling had been conducted in this area. In review of the historical information no sampling has been conducted within the mill buildings. Further inspection of the mill buildings would be required to determine any potential sources of contamination.

Test pitting was completed in 2008 along the northern area of the mill buildings adjacent to the Kalamazoo River These activities were conducted to provide further information about the potential contaminant transport pathways from the papermaking processes

Confirmation sampling will determine the extent of contaminants surrounding the old transformer pad. An inspection of the outflow pipes and perimeter of the buildings would allow for surface sampling of any potentially impacted areas and confirmation that all outflow pipes have been capped.

No studies have been completed on the South Parking Lot An inspection and analysis of soil and groundwater conditions would allow for a better understanding of this portion of the Site

Further no investigations have been conducted within the intermediate and deep groundwater flow systems. Further characterization of the intermediate and deep groundwater flow systems should be conducted to confirm no impacts exist. Both groundwater and soil sampling should be conducted along the Mill Race and areas of undeveloped land (i.e., parking lots) to confirm the presence of fill below the paved areas and allow for a better understanding of the hydrogeologic connection between the Mill Race and the Kalamazoo River. Investigations will include inspection of any potential conveyances from the mill buildings to the former wastewater treatment areas (i.e. primary and secondary clarifiers) to determine pathways in which wastewater was transported to these areas.

43 NORTH CENTRAL PORTION OF THE SITE (AREA 3)

Previous soil and groundwater investigations have been conducted in this portion of the Site. Exceedances within the soil were noted in the northern part of Area 3 near the Kalamazoo River banks. Groundwater exceedances were noted along the southern property boundary. Therefore, confirmation sampling of the soil exceedances is needed to confirm the extent of contaminants along the bank area.

As SGWB-10 no longer exists, reinstallation of this well to confirm groundwater impacts is necessary. As SGWB 3 is sufficiently close to existing monitoring well MW-8 the water quality data at MW 8 is sufficient for the purposes of this work plan.

Minimal sampling has been conducted within the undeveloped areas located with the parking lots therefore further sampling is required

4 3 1 FORMER QUALITY PRODUCTS AND SLUDGE DEWATERING BUILDING (AREA 3A)

There was little to no information available for the Former Quality Products and Sludge Dewatering Buildings on-Site This provides a data gap for the analysis of this portion of the Site Further inspections are needed in order to determine impacts, if any associated with the historical operation of these buildings

4 3 2 FORMER SPECIALTY MINERALS INC (AREA 3B)

There is little known about the Former Specialty Minerals Inc. buildings on Site and the historical manufacturing process. In order to determine any impacts associated with the historical operations or any potential need for remediation, further inspections are required.

4 3 3 FORMER COAL PILE STORAGE (AREA 3C)

The former coal pile storage area is located on the north central portion of Area 3. This area has historically been used for the storage of coal prior to use. Previous soil investigations have confirmed the presence of coal and fill below ground surface. No historical or current investigations have determined the depth of coal within this area that would require off-Site removal. One temporary groundwater monitoring well was installed in this area near the railroad tracks. No impacts were noted at this location Further investigations to determine the extent of residual coal need to be conducted.

434 NO 6 FUEL TANK AREA (AREA 3D)

Many previous soil investigations have been conducted within Area 3D to determine the impacts associated with the fuel tank. In 1999 approximately 2 feet of soil was removed in a 40 square foot area. Sampling was conducted at five different locations to confirm

all impacted material was removed. Confirmatory sampling indicated further exceedances of VOCs and SVOCs

Groundwater sampling was conducted in 1997. One groundwater sample indicated exceedances on the northern side of the fuel oil tank however, this temporary well was removed. Further investigations will need to be conducted to determine the extent of residual impacts within the soil and groundwater due to the limited historical data. Confirmation of the soil excavation cleanup will also need to be determined.

4 3 5 FORMER COAL STORAGE TUNNEL (AREA 3E)

The former Coal Storage Tunnel was investigated in 2008 and summarized in the report submitted by RMT to the U.S. EPA on February 5, 2009. Investigations included determination if liquids had migrated to the groundwater, hand excavation to determine the length of the tunnel and any associated piping and a physical assessment of the interior of the tunnel including clearing the ground surface on-top to determine additional access points. The report concluded that the coal tunnel was structurally sound and no major cracks were identified in the concrete. A heavy fuel oil with a layer of water was identified within the tunnel. Sampling conducted determined there were no PCBs present. For the purpose of the Phase II RI, this information is sufficient to determine this area as a area of impact, therefore no further RI sampling will be conducted at this time. A further assessment of the soils surrounding the former Coal Storage Tunnel is required to determine the potential impacts outside the tunnel.

436 BACKGROUND INFORMATION

After review of all historical reports limited background soil and groundwater data is available for the Site. The intention of the Phase II RI is to confirm historical exceedances and perform soil and groundwater investigations at various locations where data gaps were determined. At this point in the investigation characterization of background soil quality is not necessary. Groundwater monitoring wells located along the southern boundary of the Site (i.e. Allegan Street) are considered to be representative of the groundwater concentrations migrating onto the Site. After completion of the proposed activities, the need for further collection of background data will be assessed and subsequently proposed to the U.S. EPA for approval

50 PHASE II REMEDIAL INVESTIGATION

The following subsections outline the approach and scope of the Phase II RI sampling and analysis activities. The Phase II RI approach has been subdivided into three areas consistent with the areas discussed in Section 2.1. A tabular description of the proposed sampling and analysis activities is presented in Tables 5.1 through 5.4. These tables are provided as a reference and should be used in conjunction with the following sections. Figure 5.1 presents an overall Site wide summary of the proposed Phase II RI sampling locations. Figures 5.2 through 5.5 identify the proposed sampling locations in more detail for each of the three areas.

51 <u>SAMPLING PROGRAM</u>

For the purposes of the Phase II RI, as noted in Table 54, sampling protocols are outlined in the FSP and QAPP The following field activities will be conducted to complete the Phase II RI

Field Activity	FSP Reference
Soil sampling with Direct Push Sampler	SOP F 5
Surficial Soil Sampling	SOP F 6
Excavation and Test Pits and Test Pit Soil	SOP F 8
Sampling	
Photoionization Detector (PID) Screening	SOP F 9
Monitoring Well Installation	SOP F 15
Groundwater Sampling	SOP F 11
Surface Water Sampling	SOP F 16
Staff Gauge Measurement	SOP F 10
Vertical Aquifer Sampling	SOP F 17
Sample Handing and Analysis/ Quality	Section 4
Assurance	
Sample Labeling	Section 3 1
Chain of Custody Records	Section 3 3
Management of Investigation derived	Section 6 0
Waste	
Field Physical Measurements/ Surveying	Section 5 0/Section 5 1
Hand Auguring	SOP F 6

Details on the sampling methodology are provided in the FSP and are therefore not included in this work plan

511 SOIL SAMPLING PROGRAM

Soil samples will be collected on a continuous basis (2 foot intervals) as defined in the FSP for the boreholes. Test pits will be 5 to 10 feet in length and will be completed as defined in the FSP. Field screening of soil samples will consist of photoionization detector (PID) readings to determine the presence of undifferentiated volatile organic vapors, visual screening for lithologic changes stained soils and residuals, and olfactory evidence of impacts. Field observations will be noted in the field notes obtained for the Site. Further details pertaining to soil collection and logging of soil stratigraphy are presented in the FSP.

Surficial soil samples will be collected to determine the quality of surficial soils across the Site. Samples will be collected from 0 to 1 foot bgs. If non-soil materials are present (i.e. gravel fill or concrete slabs) the soil sample will be collected from 0 to 1 foot below the non-soil material.

To ensure that soil samples collected for VOCs are preserved prior to selection of samples for laboratory analysis the following process will be completed

- The 0 to 1 foot soil sample interval (surface sample collected as noted above) will be preserved
- Sample intervals below the 0 to 1 foot interval will be preserved if the material is non native and the PID reads are greater then 5 parts per million (ppm). For example, all samples of the fill material will be collected if there is field evidence of VOC impact (i.e., PID visual, olfactory, etc.)
- The first sample below the interface of non-native/native material will be preserved
- The non native material samples will not be preserved unless there is field evidence of impacts (i.e., PID, visual, olfactory, etc.)

To aid in the screening of soil quality across the Site the following sampling programs have been selected for the completion of the RI as described in Table 5.4

Sampling Program 1 is as follows

 One surficial soil sample will be collected as indicted in Tables 5 1 to 5 3 One biased soil sample will be collected from what has been deemed fill material from a depth of 2 to 10 feet bgs based on field screening. If no impacts are noted one soil sample will be collected from 0 to 2 feet above the interface between the fill and native material within the vadose zone.

- One soil sample from 0 to 2 feet below the observed impact will be collected. If no impact is observed the soil sample will be collected from 0 to 2 feet below the interface of the fill/native material within the vadose zone.
- One soil sample will be collected from the vadose zone 0 to 2 feet above the saturated zone

Sampling Program 2 is as follows

- One surficial soil sample will be collected as indicted in Tables 5 1 to 5 3
- If no impact noted a discrete soil sample will be collected from 0 to 2 feet above the interface of the vadose and saturated zone. If impact noted one soil sample will be collected within 2 to 10 feet bgs and a third sample collected from 0 to 2 feet above the interface of vadose and saturated zone.

Sampling Program 3 is a follows

- One surficial soil sample will be collected
- One soil sample will be collected from the fill material which is expected to be at approximately depths of 2 to 10 feet bgs based on field screening methods. Soil borings not exhibiting any evidence of impact will be sampled at 0 to 2 feet above the interface of fill/native material within vadose zone.
- One soil sample will be collected from 0 to 2 feet below the observed contamination. If no evidence of impact is observed the soil sample will be collected from 0 to 2 feet below the interface of fill/native material within vadose zone.
- One soil sample will be collected from vadose zone at 0 to 2 feet above the saturated zone

512 GROUNDWATER SAMPLING

Monitoring well purging and groundwater sampling will be performed in accordance with acceptable U.S. EPA low flow purging (LFP) and sampling techniques as outlined in the FSP. Special attention will be paid to minimizing the possibility of degassing the groundwater samples during sample collection. Groundwater samples will not be field filtered, unless otherwise indicated in Tables 5.1 to 5.4.

513 VERTICAL AQUIFER SAMPLING

Vertical Aquifer Sampling (VAS) allows for the collection of representative samples at various sample depths to create a profile of soil and groundwater conditions. This method allows for the identification of confining layers which may limit migration of

groundwater impacts below a certain depth both vertically and horizontally (i.e., impact noted within certain confining layers). The purpose of this sampling as part of the RI investigation is to obtain information about the native soil and groundwater at depths greater than the historical information reviewed (i.e., deeper levels of the aquifer). Further VAS, temporary wells or monitoring wells maybe installed at the Site dependant on the conclusion of this initial sampling in conjunction with the groundwater sampling on Site

VAS will be conducted at two locations across the Site to determine soil and groundwater conditions at depth. As discussed below in Sections 5.3 and 5.4 the first location is within Area 1 (Lagoon J) the second in Area 2 (adjacent to MW 4). These two locations were chosen based on historical impacts current borehole logs, and proximity to the Kalamazoo River. Further details are presented in Section 5.3 and 5.4.

VAS samples will be collected every 5 feet using a bailer, where possible, to a maximum depth of 40 feet bgs, to profile groundwater and soil conditions below the water table and the river banks. The use of a bailer will allow for consistency during sample collection. VAS samples will be collected for both filtered and unfiltered metals analysis.

Purging of the groundwater prior to sample collection will not occur as no water is being introduced during the drilling process therefore, all water within the sampler is representative of the formation. As described in the SOP F 17 for the VAS sampling (included in the FSP for the Site), water levels will be taken to ensure that the groundwater samples are that of the formation

514 QUALITY ASSURANCE/ QUALITY CONTROL SAMPLES

As outlined the QAPP and FSP all quality assurance/ quality control samples (QA/QC) will be collected on the frequency as required, this includes field duplicate samples (at a frequency of 1 per 10 samples), matrix spike/ matrix spike duplicates (MS/MSDs) (at a frequency of 1 per 20 samples), trip blanks (per cooler containing water samples) and field equipment blanks (frequency of 1 per 10 samples). The quality control samples for trip blanks field duplicates and MS/MSD samples are outlined on Table 5.1 through 5.3 and are estimated based on the current proposed sampling. Field and sampling conditions may alter this program, therefore the QA/QC samples will be adjusted accordingly.

56394 (2)

5 2 ON SITE BUILDINGS

As noted in Section 40 the mill (Area 2) Former Quality Products and Sludge Dewatering Buildings (Area 3A) and Former Specialty Minerals Inc (Area 3B) buildings are identified as data gaps. Due to the limited knowledge of the historical land use and operations of these buildings a site inspection has been included in the Phase II RI and described below

These site inspections will allow for further understanding of potential environmental concerns regarding historical operations that would require further investigation as part of the RI. As noted in Section 5.4. 5.5.2 and 5.5.3 additional investigations for these areas will be presented to the U.S. EPA in a tabular sampling and analysis plan for review and approval

FORMER WASTEWATER SLUDGE DEWATERING LAGOON AND AERATION BASIN AREA (AREA 1)

The proposed sampling and analysis plan for Area 1 is presented in Table 5.1 with proposed sample locations identified on Figure 5.2 and 5.3. The rationale for the sampling approach for Area 1 is outlined below

Soil Investigation

Further characterization of the potential contamination associated with the former wastewater lagoons is required to determine an appropriate remedial approach for the lagoon areas Investigations within the lagoon areas are also to assess impacts associated with potential morphing of the lagoons. The objective of sample in the lagoons is to characterize potential soil impacts vertically rather than horizontally at this stage of the RI.

Investigations of the areas of undeveloped lands have been included to determine any potential impacts from historical land uses

The following sampling activities will be conducted to address data gaps identified in Section 4.0 Further details including depths of soil borings, are presented in Table 5.1

 Investigation of the identified lagoon areas is proposed to confirm the depth and extent of potential contamination. Installation of two soil borings one at each of the assumed peripheral ends of the former lagoons is proposed. The location of the deep soil borings would be based on field identification to assess physical constraints and previous investigations. An additional soil boring

- within Lagoon J will be installed to confirm the depth of paper waste in this lagoon area. Soil sampling will be conducted as per Sampling Program 1.
- Confirmation of exceedances noted during historical investigations and further delineation of soil chemistry from across the lagoon area as needed to meet the objectives of the RI Sampling will be focused on the 0 to 1 foot bgs interval to determine any direct exposure hazards to the public in relation to potential construction activities relating to the redevelopment of the Site
- Investigation of any potential impacts associated with the aeration basin will be completed as per Sampling Program 1
- Investigation of potential impacts in the areas adjacent to the lagoons, and aeration basin will be completed as per Sampling Program 1
- Confirm the extent of the lagoons and if any, impacts associated with the surrounding soils resulting from migration of contaminants toward the Kalamazoo River will be completed as per Sampling Program 1
- Determination of potential historical morphing of the lagoon areas will be completed as per Sampling Program 1
- Investigation of potential impacts associated with the former secondary clarifer Sampling will be completed as per Sampling Program 1
- Soil sampling will be conducted in the wooded area as indicated on Figure 5.3 and described below
- Collection of five samples to determine the soil physical properties for risk assessment purposes
- Collection of soil samples as per Sampling Program 1 will occur during installation of MW 13, MW-14 and MW 15

Soil Sampling-Wooded Area (Area 3)

Soil sampling will be conducted in the wooded area as indicated on Figure 5.3 Based on review of historical information, the wooded area has remained unchanged throughout mill expansions. As such, based on discussions with the U.S. EPA, 12 surficial soil samples and four soil borings were randomly selected within this area. The following is a description of the selection process

- A 100 foot grid has been applied to the area creating 24 potential 100 by 100 foot sample areas
- From the 24 potential sample areas, 12 locations (highlighted in yellow) were chosen based on a random number table (i.e., 1, 5, 7, 9, 11, 13, 14, 15, 16, 17, 19, and 23)
- A 9 square grid within each of the 24 potential sample areas was used to select the specific sample location

- Sample locations (within the 9 square grids) were selected using a random number table starting from grid location at the southwest corner
- Soil boring locations were further selected by using a random number table to determine which 100 by 100 foot grid the soil borings would be placed (i.e. 5.7, 14, and 16)
- Surface sampling will be conducted at the locations not selected for soil borings (i.e., 1.9, 11.13, 15.17.19 and 23)

This investigation will provide the appropriate soil quality information for initial characterization of this area. Further inspection of the wooded area will occur as part of the investigation

Soil sampling will occur as per Sampling Program 2 at the four randomly selected soil borings locations. Surface samples will be collected at all locations as outlined in Table 5.1.

Groundwater Investigation

Further understanding of the groundwater flow pathways is critical to the understanding of the Site's hydrology. In addition, further characterizations of the potential impacts to groundwater from historical operations in this area are required. The following sampling activities will be conducted to address data gaps identified in Section 4.0

- Installation of one monitoring well (MW-13) screened within the paper waste to determine contaminate concentrations of the waste for comparison to the Sites analytical data
- Re-installation of SGWB-2 (MW-14) located south west of the lagoon areas to characterize groundwater flow direction through this area and provide an upgradient monitoring well location for the lagoon area
- Installation of a monitoring well north of the former secondary clarifier (MW-15) to determine any potential groundwater impacts related to prior discharges
- Soil sampling during installation of the new monitoring wells to characterize potential soil impacts in these areas as per sampling program 1
- Completion of VAS at location MW-13 within Lagoon J This area was selected to characterize the groundwater above, within and below the residual paper waste. Soil boring SPL-2 indicates paper waste from approximately 5.8 feet to 11 feet bgs. Further, black stained fine sand is noted from 11 feet to the borehole terminus. As the borehole log indicated the paper waste was saturated, this location would provide opportunity to sample the groundwater chemistry. No groundwater sampling has been conducted previously in this area. Further this

lagoon is northwest of proposed location MW-14. This location will aid in the characterization of groundwater flow through the lagoon area and provide information related to the depth of potential confining layers within the native soil beneath the paper waste.

Sampling of current monitoring wells (i.e. MW-8 MW-9, MW-10 MW-11 and MW-12) and the three new monitoring wells (i.e., MW 13 MW-14, and MW 15) to determine and confirm groundwater impacts

54 MILL BUILDING AREA (AREA 2)

The proposed sampling and analysis plan for Area 2 is presented in Table 5.2 with proposed sample locations identified on Figure 5.4. The rationale for the sampling approach for Area 2 is outlined below

Mill Buildings Inspection

As described in Section 5.2, a detailed inspection consisting of a review of available historical information pertaining to the various areas of operation within the mill buildings followed by a walk through of the buildings, will be completed near the beginning of the Phase II RI field activities to identify potential areas of release. This will include historical and current ASTs locations loading and unloading areas storage areas process rooms, drainage piping and potential underground conveyances to the wastewater lagoon areas.

Following completion of the walk through, development of a tabular sampling and analysis plan (similar to Tables 5 1 through 5 3) and an accompanying proposed sample location figure will be presented to investigate any potential impacts to soil and/or groundwater within the mill buildings. After review and approval of the tabular sampling and analysis plan, the scope of the investigation will be completed as part of the Phase II RI activities

Soil Investigation

Significant soil investigation activities have been completed within Area 2 for the areas outside of the mill buildings. Therefore, further investigations are needed as part of the Phase II RI sampling activities. Investigation into the areas along the Mill Race and the undeveloped south parking lots will be conducted. The following sampling activities will be conducted to address data gaps identified in Section 4.0. Further details including depths of soil borings are presented in Table 5.2.

 Confirmation and vertical delineation of potential contamination in the area of TP-17 and TP-18 surrounding the historical transformer pad located in the north

- east portion of the Site adjacent to the Kalamazoo River Sampling will be conducted as per Sampling Program 1 Collection of one surface sample from each location will be completed
- Visual inspection of outflow points identified during previous investigations along the Kalamazoo River to ensure capping was conducted properly and no further issues pertain to these outflows Surface sampling may be conducted if any visual evidence of impact is noted
- Visual inspection of the surface soils surrounding the mill buildings to determine if any staining is present in relation to historical Site activities. Surface soil sampling may be conducted if necessary
- Installation of one soil boring (MW-16) adjacent to the Mill Race to determine soil conditions adjacent to the mill buildings Samples will be collected as per Sampling Program 1
- Installation of one soil boring (i.e., MW-17) in the southern corner of the parking lot area adjacent to the Mill Race for visual inspection. Samples will be collected as per Sampling Program 2
- Completion of three test pits within the undeveloped south parking lot and former background location BK5 to confirm the presence of fill below the parking lot areas and determine impacts associated with historical activities Sampling will be conducted as per Sampling Program 2 including the collection of surface samples at each location
- Collection of samples to determine the soil physical properties for risk assessment purposes

Groundwater Investigation

The hydrogeology in portions of Area 2 has not been fully defined and further understanding of the groundwater flow pathways is necessary. It is expected that the groundwater flow within this area is highly dependant of the mill race and the Kalamazoo River systems. The following sampling activities will be conducted to address data gaps identified in Section 4.0

- Installation of a monitoring well (i.e. MW 16) adjacent to the mill buildings near the end of the Mill Race to further define the groundwater flow patterns at this area
- Installation of one monitoring well (i.e. MW-17) in the southeast portion of the Site to determine influences of the Mill Race on the water levels at the southern property boundary in relation to water levels at SG-1
- Although the two proposed monitoring wells will be sampled for chemical analysis, the primary objective of these two locations is to further understand the hydraulic interaction of the Mill Race and groundwater

- VAS will occur adjacent to MW-4 This location is within the proximity of the Kalamazoo River and downgradient of the mill buildings. Historical impacts have been noted at this location, therefore sampling will determine the depth of impact within this area and identify potential confining layers along the Kalamazoo River and capturing any residual impacts downgradient of the mill buildings
- Collection of groundwater samples from previously installed monitoring wells (i.e., MW-1, MW-2 MW-3, MW-4, and MW-5) and the newly installed monitoring wells (i.e. MW-16 and MW-17) to confirm the groundwater chemistry at the Site

Surface Water Sampling

Sampling within the Mill Race and the Kalamazoo River will be conducted to collect analytical data necessary for use of the Part 201 GSI screening criteria (i.e. collection of hardness data). Sampling will also be conducted for low-level mercury, and methyl mercury to determine levels within the two adjacent water bodies for completion of the RI report. Further, surface water levels will be measured to further understand the hydrogeologic conditions on Site

5 5 NORTH CENTRAL PORTION OF THE SITE (AREA 3)

The proposed sampling and analysis plan for Area 3 is presented in Table 5.3 and proposed sample locations are identified on Figure 5.5. The rationale for the sampling approach for each of the subsections of the Area 3 is outlined below

5 5 1 NON SPECIFIC AREAS (AREA 3 GENERAL)

Soil Investigation

Based on the historical information reflected on Figure 3.3, comprehensive soil sampling has been completed in the northern portion of the Area 3. Advancement of three soil borings (i.e., SB-301. SB 302, and SB-321) in the northern portion of the Area 3 will confirm the historical exceedances (i.e. DG3. DG4, and SGWB-10) observed at this portion of the Site. Sampling at this location will follow Sampling Program 1. One surface soil sample will be collected from each location.

In addition, test pitting at seven locations within the undeveloped areas is proposed to confirm the presence of the quality of fill materials beneath the parking lot areas. Each location has been selected based on historical information available and/or not available

56394 (2)

and to provide sufficient coverage over this area Soil sampling will be conducted as per Sampling Program 2 Surface soil samples will be collected at each location

A visual inspection of the remainder of the area will be conducted to identify presence of surface soil staining. After inspection, further sampling maybe proposed and will be completed as part of the Phase II RI activities.

Soil samples from various locations at this portion of the Site will be collected for determination of the physical soil properties

Soil sampling will occur during the installation of MW-18 as per Sampling Program 1

Groundwater Investigation

Groundwater investigations will be based on the historical sampling conducted at the Site. The following sampling activities will be carried out to address data gaps identified in Section 4.0

- Re installation of SGWB-10 to confirm groundwater exceedances previously noted (i.e., MW-18)
- Collection of groundwater samples from previously installed monitoring wells
 (i.e., MW-6 and MW-7) and the new monitoring well (i.e. MW-18) to confirm the
 groundwater chemistry at the Site

5 5 2 FORMER QUALITY PRODUCTS AND SLUDGE DEWATERING BUILDINGS (AREA 3A)

The Former Quality Products and Sludge Dewatering Buildings are located on the western portion of the Area 3 Limited information is available regarding the historical operations of these buildings and this area has not undergone prior investigations. In order to fully understand historical land uses a Freedom of Information Act Request (FOIA) will be requested for this property followed by a visual inspection of the interior and exterior of the buildings as needed. Based on information received, additional investigations maybe considered and a sampling plan will be proposed to the U.S. EPA in the form of a tabular sampling and analysis plan for review and approval and will be included as part of the Phase II RI activities.

5 5 3 FORMER SPECIALTY MINERALS INC (AREA 3B)

The former Specialty Minerals Building is located on the southwestern portion of the Area 3. Former manufacturing of chemical was conducted at this location which was then transported to the paper mill to aid in production. Limited information is available for this location therefore, a FOIA search will be conducted for this property to determine any potential releases of spills associated with historical Site activities followed by a walk through of the interior and exterior of the buildings as needed Based on information received, additional investigations maybe considered and a sampling plan will be proposed to the U.S. EPA in the form of a tabular sampling and analysis plan for review and approval and will be completed as part of the Phase II RI activities.

5 5 4 FORMER COAL PILE STORAGE (AREA 3C)

The former coal pile storage area is located in the center of the Area 3. This area historically was the storage area for the coal used as a fuel for on-Site processing Limited historical sampling has been conducted at this area and it is unknown to what depth coal has been placed in this area. Therefore, as part of the Phase II RI eight test pits (i.e., TP-308 through TP-315) will be excavated to depths of approximately 10 feet bgs to further identify the potential subsurface coal contamination within this area to determine the location/depth of potentially contaminated soils, and to confirm soil quality. Soil sampling will be conducted as per Sampling Program 2 to determine historical impacts beyond the coal present within this location. Collection of a minimum of five surface soil samples will be conducted based on field screening.

5 5 5 NO 6 FUEL TANK AREA (AREA 3D)

The No 6 Fuel Tank Area has been subject to many historical Site investigations. This area is located on the northeastern side of the Area 3. Currently the 200,000 gallons Fuel Oil Tank is on the property and it is unknown if this tank still contains fuel oil. The following additional activities are proposed for the Area 3D.

Tank Inspection

A inspection of the exterior structural integrity of the tank will be conducted to determine areas of potential releases. The inspection would attempt to determine potential presence and amount of fuel in the tank and to identify staining noted around the perimeter of the tank area. Based on this inspection further sampling beyond what

is outlined below maybe proposed and will be completed as part of the Phase II RI activities

Soil Investigation

The Phase II RI sampling activities include the advancement of five soil borings in the vicinity of the 200,000 gallon Fuel Oil Tank to further define any impacts related to soil contamination around the fuel tank. Historical analytical data indicated various exceedances throughout sampling activities conducted at the area around the tank. Due to previous removal of soils surrounding the tank it is assumed that the top 2 feet of the area will be fill. Advancement of five soil borings (i.e., SB-303 through SB-307) to characterize any potential sources of impact. Soil sampling will be conducted as per soil Sampling Program 3 which includes surface soil sampling based on field screening at each location.

Soil sampling will occur at MW 19 during installation activities as per Sampling Program 2 including a surface sample

Groundwater Investigation

Various temporary monitoring well locations have been placed around the fuel oil tank Historical groundwater impacts were noted at temporary well SGWA 5 located downgradient of the fuel oil tank. Installation of one monitoring well (i.e. MW-19) to replace SGWA-5 will confirm previous groundwater impacts noted at this area.

5 5 6 FORMER COAL STORAGE TUNNEL (AREA 3E)

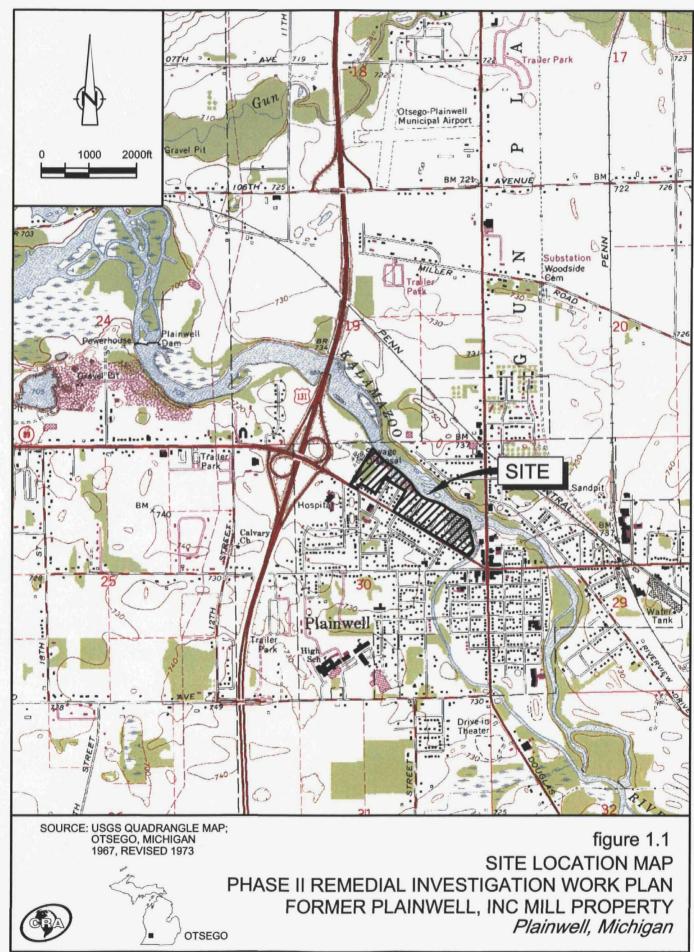
The Former Coal Storage Tunnel is located south of the No 6 Fuel Tank Area on the eastern part of the Area 3 Limited soil sampling has been conducted in this area. An assessment of the tunnel was conducted in October 2008 (submitted to the U.S. EPA on February 5, 2009, by RMT) as part of the Phase I RI, which determined that liquid is present within the bottom of the tunnel area. This liquid was characterized as a heavy fuel oil with a layer of water present above it. After inspection it was determined that the concrete tunnel was intact. There were no cracks or other damages noted during inspection activities (RMT, 2009). Sampling of the fuel oil was conducted at that time

To confirm no impacts outside of the coal tunnel are present the installation of five soil borings (i.e., SB-308 through SB-312) around the perimeter of the former Coal Storage Tunnel is proposed to characterize any potential sources of contamination around the fuel oil lines and to determine if potential soil impacts at depths below the base of the tunnel, based on the results of the investigation during Phase I of the RI. Soil sampling will be conducted as per Sampling Program 2. The collection of three surface samples

will be based on field screening. Test pitting will occur to determine any impacts associated the undeveloped parts of this area (TP-304 and TP-305). Sampling conducted a these locations was discussed in Section $5\,5\,1$

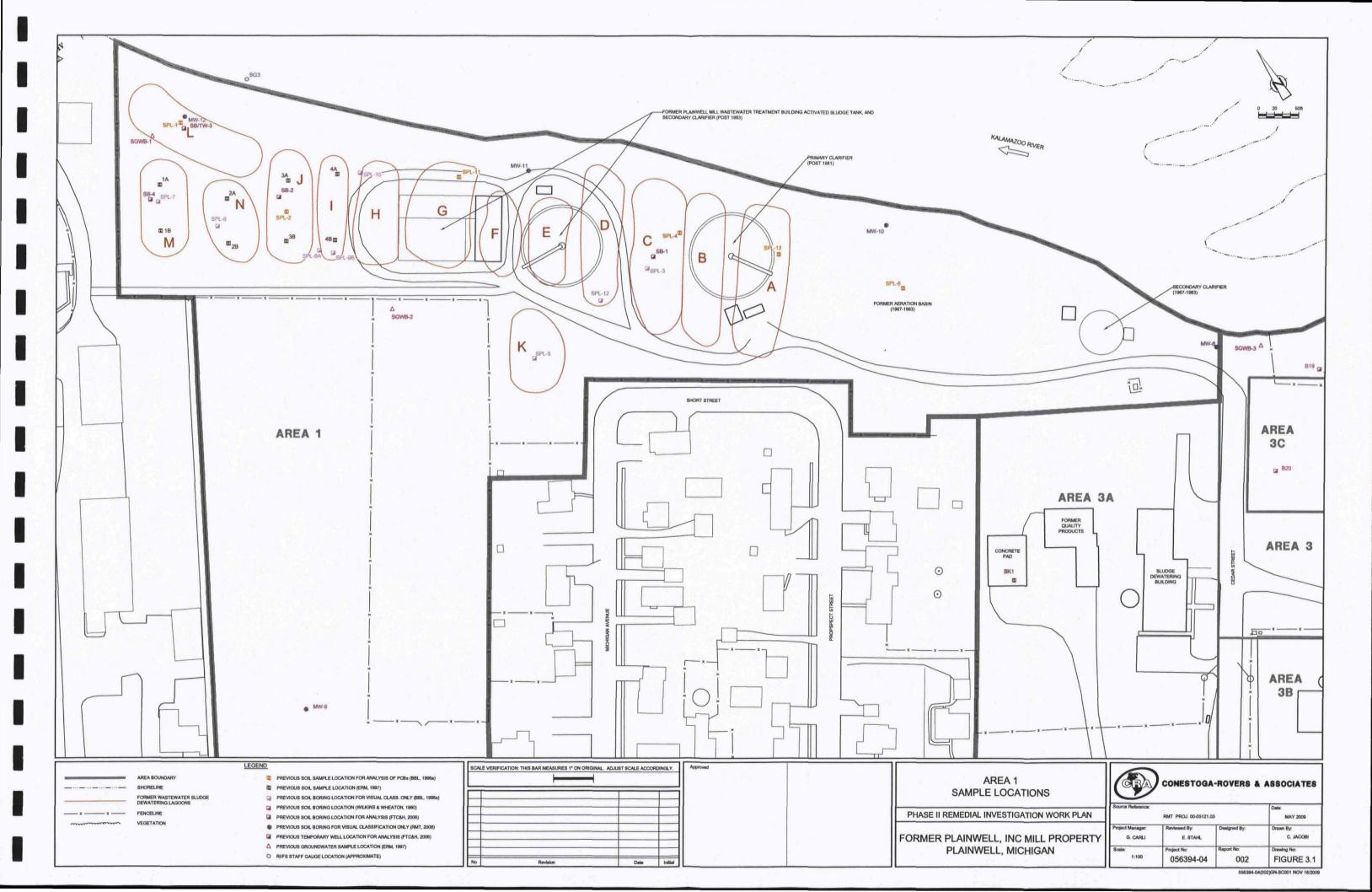
Groundwater Investigation

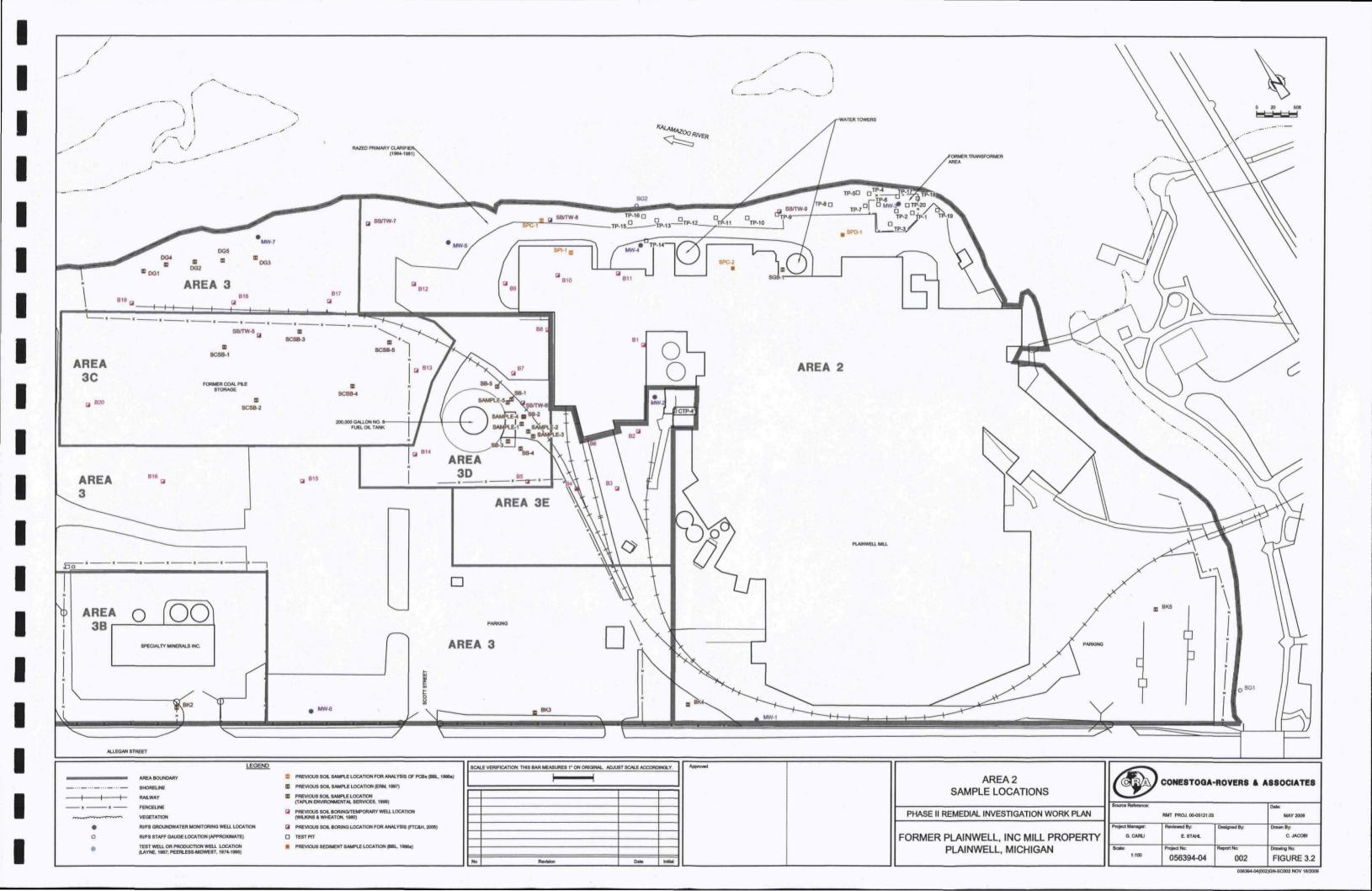
Limited groundwater sampling has been conducted in this area Sampling will occur at MW-2 to confirm groundwater chemistry at this location

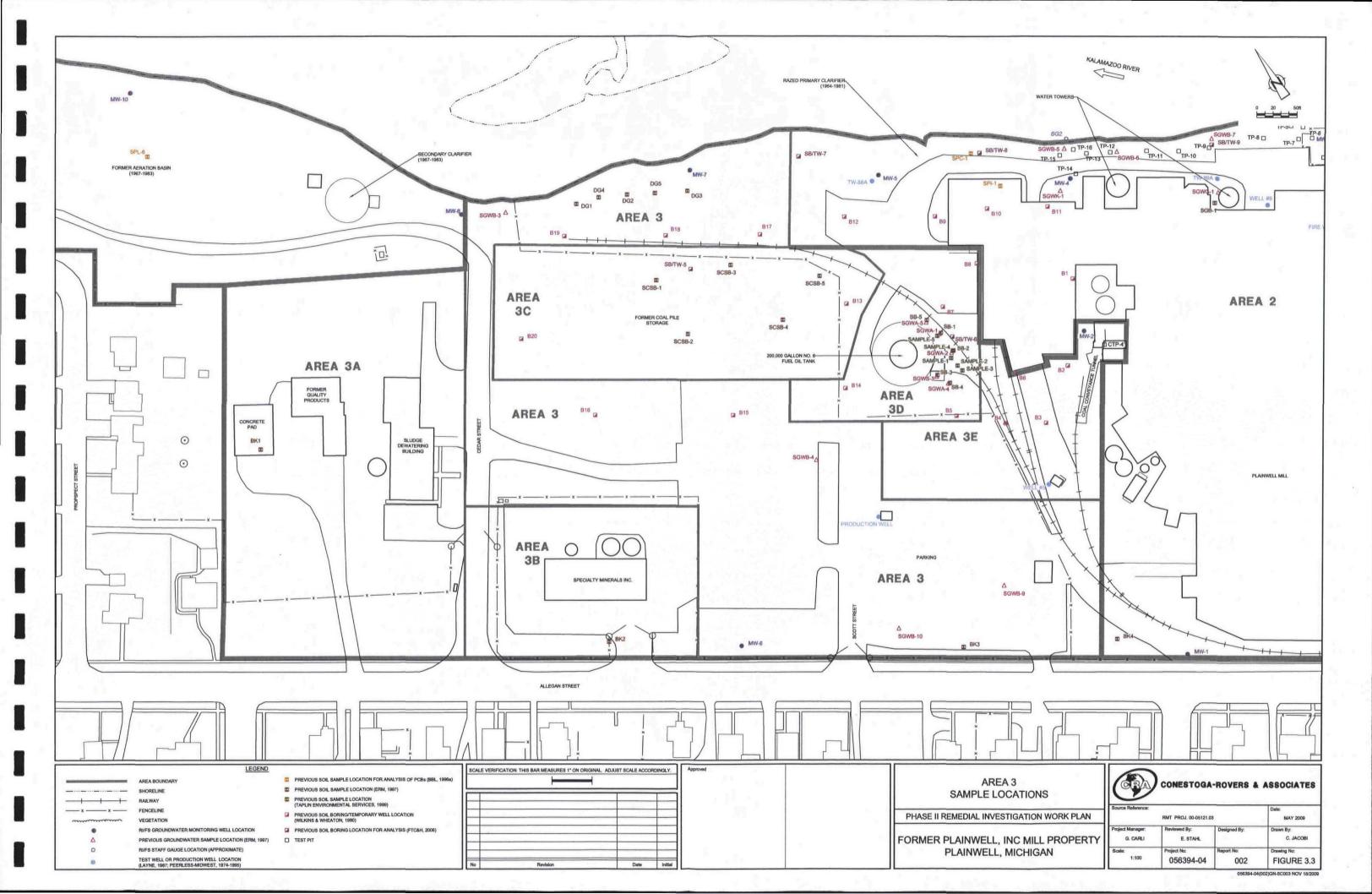

60 PROJECT SCHEDULE

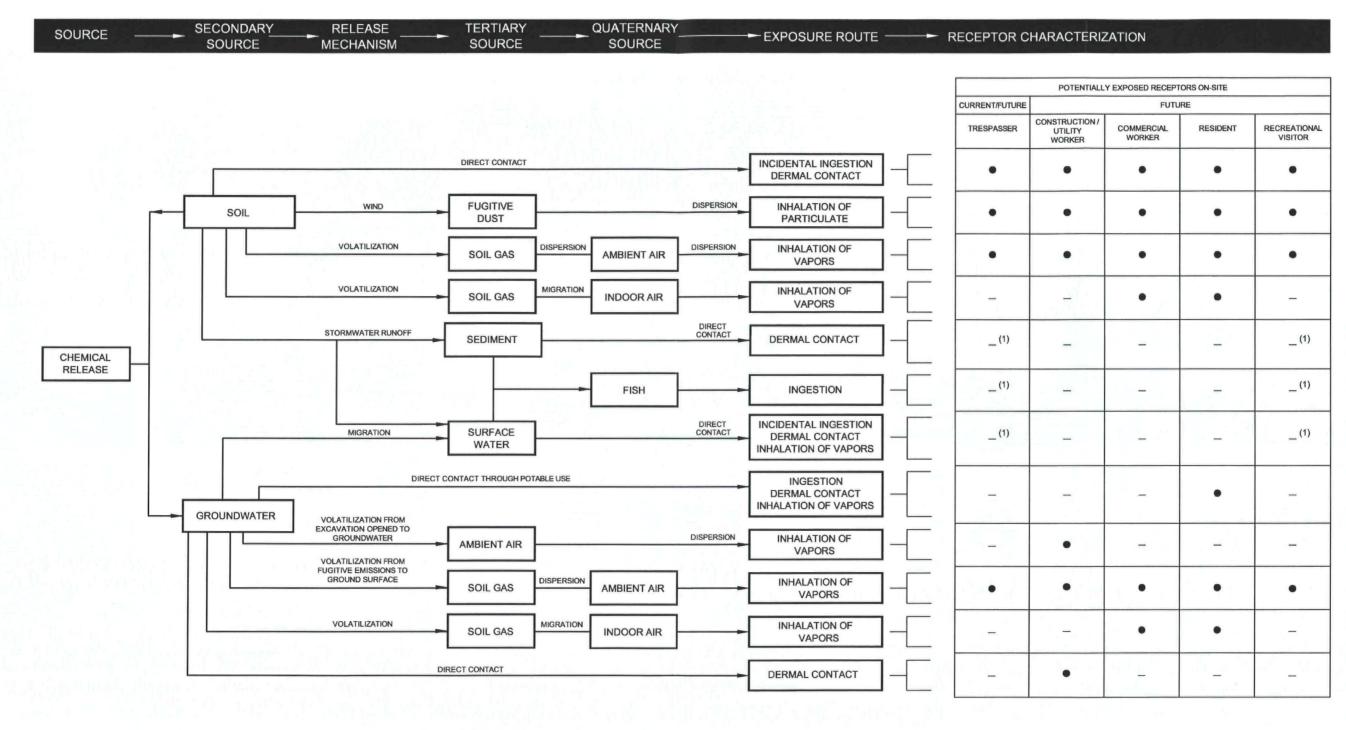
Upon approval, CRA will initiate the Phase II RI program as scheduled in November 2009 with completion in February 2010 depending on weather and Site conditions Completion of the implementation of the Phase II RI is scheduled for March 2010 The project schedule is presented on Figure 6.1

U		
	70	DEEEDENICEC
П	70	REFERENCES
		BBL, 1996 Allied Paper Inc /Portage Creek/Kalamazoo River Superfund Site Remedial Investigation/Feasibility Study Technical Memorandum 15, Mill Investigation
		Blasland Bouck & Lee Inc August 1996
		Beyer, W N , E E Connor, and S Berounld 1994 Estimates of soil ingestion by wildlife Journal of Wildlife Management 58 375-382
		British Columbia Ministry of Water Land, Water and Air Protection 2001 Tier 1 Ecological Risk Assessment Policy Decision Summary
		http://wlapwww.gov.bc.ca/epd/epdpa/contam_sites/standards_criteria/standards/tier1policy.html
]		California DTSC 1996 California Department of Toxic Substances Control Human And Ecological Risk Division, ERA note number 1, May 15, 1998 Available at
		www dtsc ca gov/AssessingRisk/upload/econote1 pdf
		ERM 1997 Simpson Plainwell Paper Company Phase I Environmental Site Assessment and Phase II Investigation Plainwell, Michigan Environmental Resources Management, June 1997
		FTC&H, 2003 Phase I Environmental Site Assessment, Plainwell Paper Mill Plainwell, Michigan May 2003
]		FTC&H 2006 Phase II Environmental Site Assessment, Former Plainwell Paper Mill, Plainwell, Michigan October 2006
		Ohio EPA, 2003 Ecological Risk Assessment Guidance Document February 2003 http://www.epa.state.oh.us/derr/rules/RR-031.pdf
7		
		RMT Inc 2008 Addendum to Remedial Investigation/Feasibility Study Work Plan PCB
		Investigation Activities near Mill Building Banks, Former Plainwell Paper Mill Banks, Plainwell, Michigan March 2008
		RMT Inc 2008 Addendum No 1 Remedial Investigation/Feasibility Study Work Plan, Former Plainwell Paper Mill Banks, Plainwell, Michigan September 2008


43


RMT Inc 2009 Technical Memorandum Preliminary Summary of Test Pit Activities & Results for Plainwell Mill Plainwell, Michigan January 2009
RMT Inc 2009 Emergency Response Plan Documentation Report Former Plainwell Paper Mill Banks, Plainwell, Michigan February 2009
RMT Inc 2009 Technical Memorandum Initial Groundwater & Coal Tunnel Assessment Plainwell Michigan February 2009
Suter, GW 2007 Ecological Risk Assessment 2 nd Edition CRC press, Boca Rotan FL 634 pp
TNRCC 2001 Guidance for conducting ecological risk assessments at remediation sites in Texas Texas Natural Resource Conservation Commission December 2001 RG-263 (revised)
United States District Court Western District of Michigan Southern Division 2005 Consent Decree January 2005
USEPA, 1997 Ecological Risk Assessment Guidance for Superfund Process for Designing and Conducting Ecological Risk Assessments Interim Final, EPA/540/R-97/006, June 1997
Wilkins & Wheaton 1980 Various Boring Logs from the Plainwell Mill Site

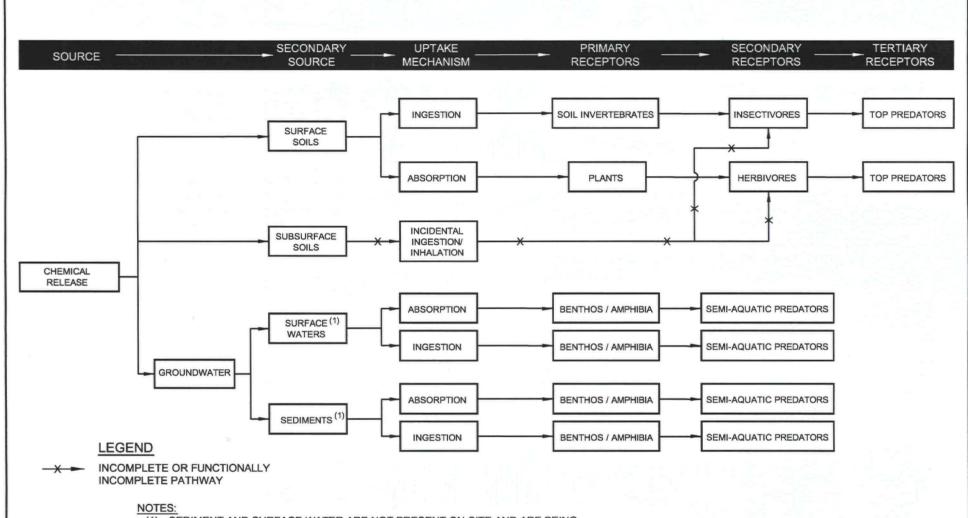




056394-04(002)GN-SC007 NOV 18

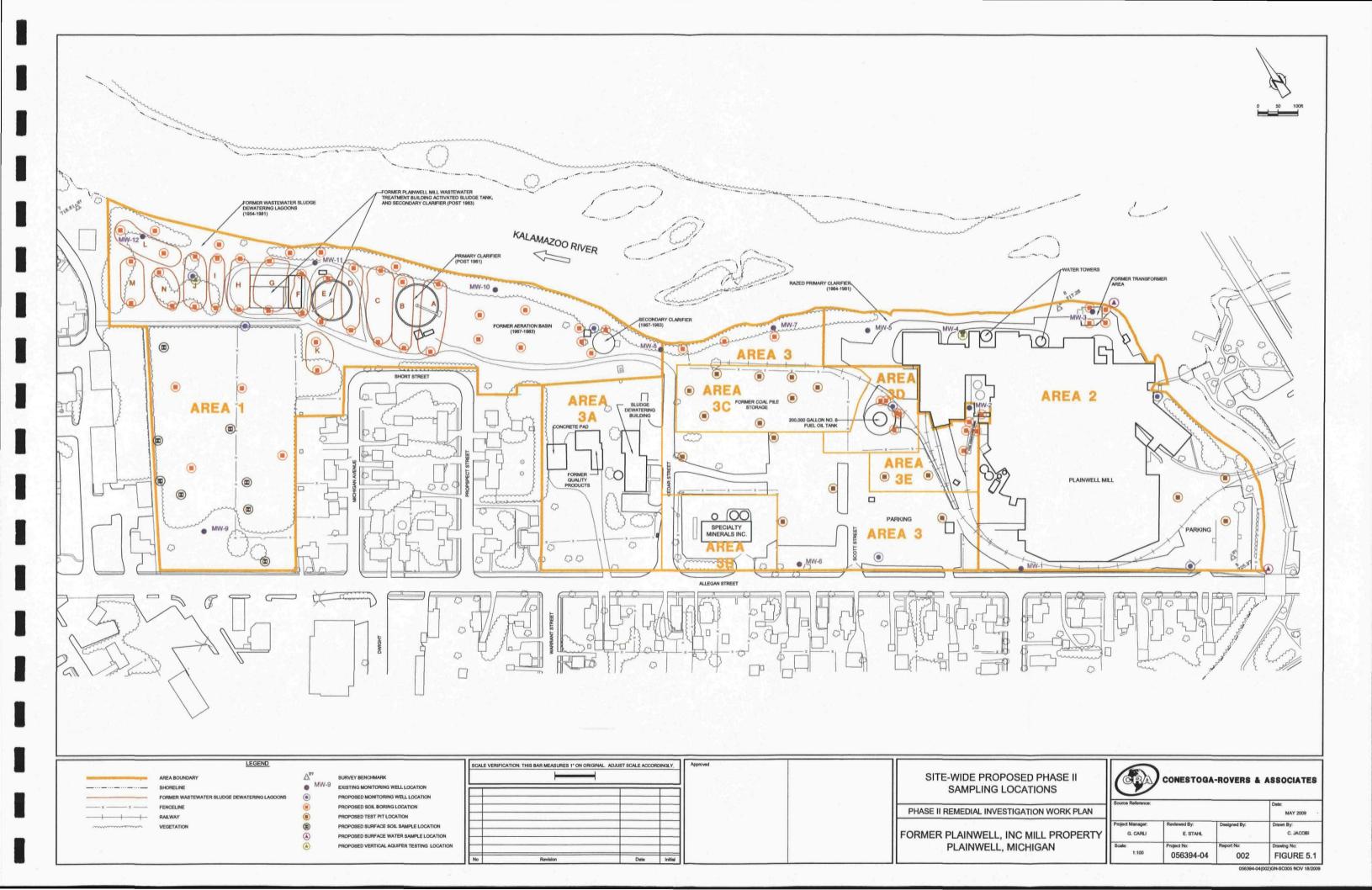
LEGEND

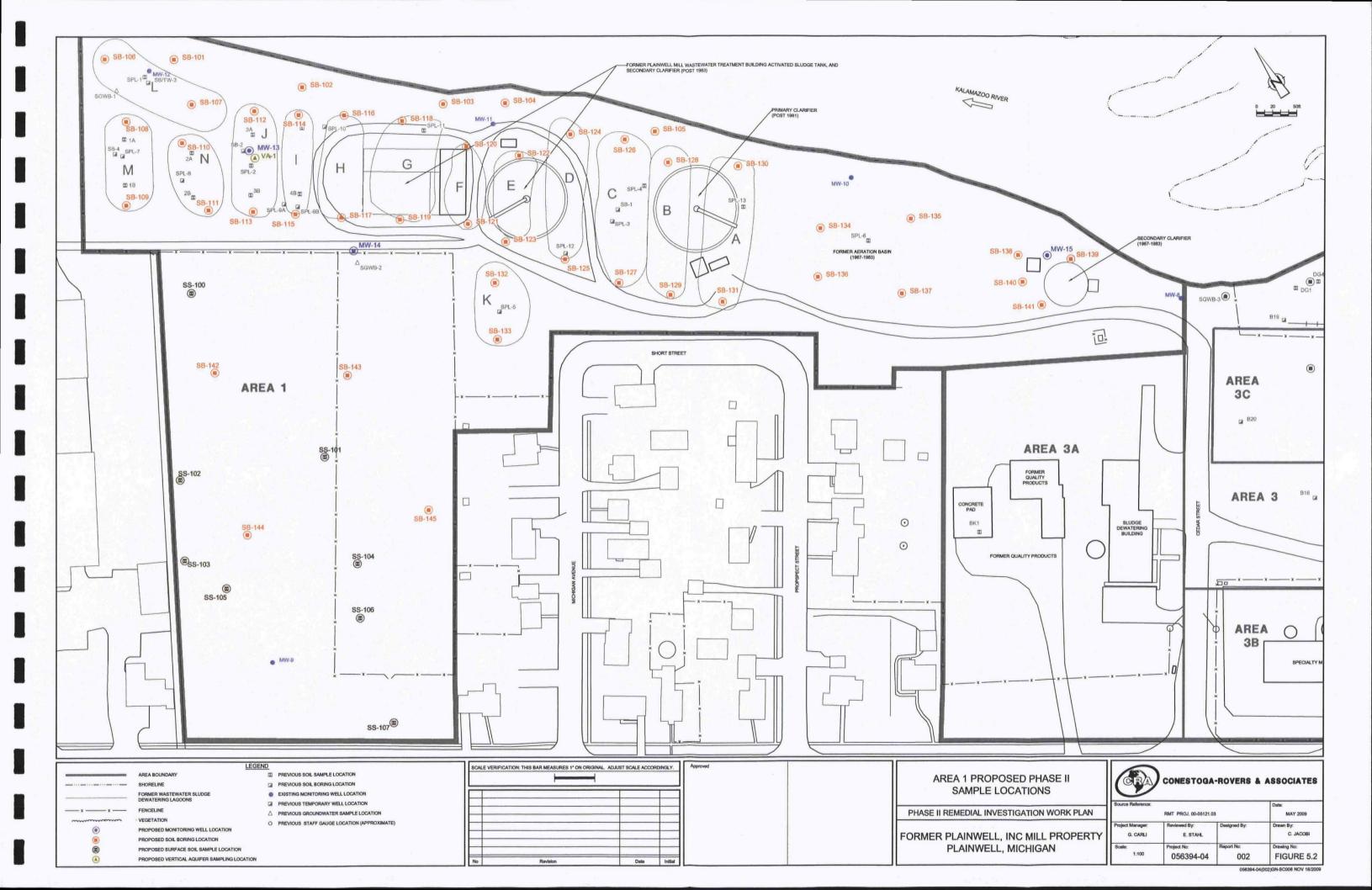
- POTENTIALLY COMPLETE EXPOSURE PATHWAY
- INCOMPLETE EXPOSURE PATHWAY

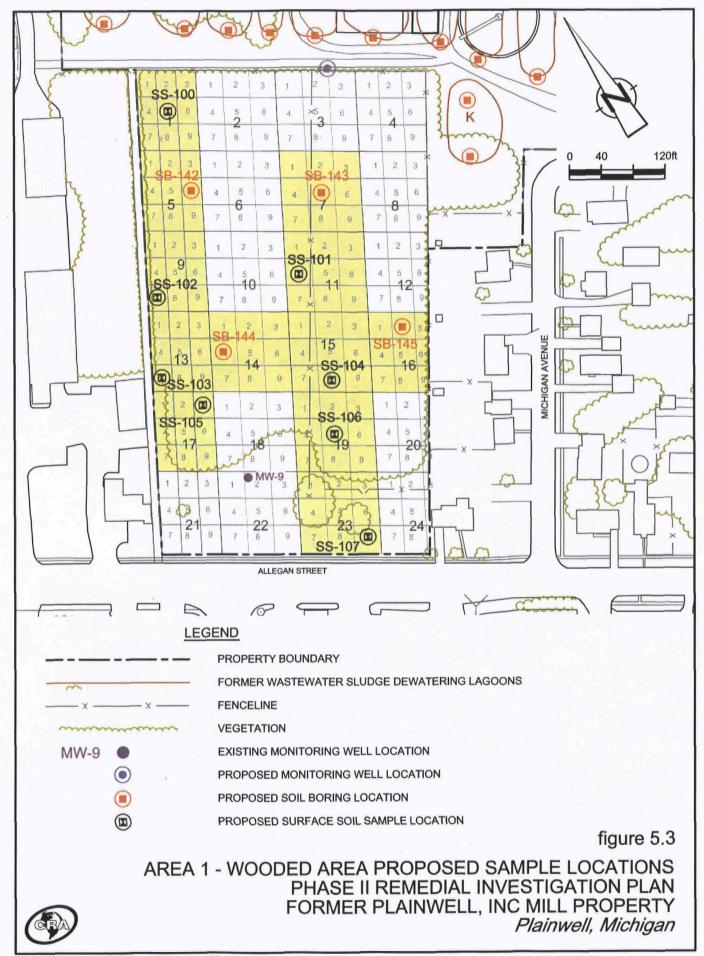

NOTES:

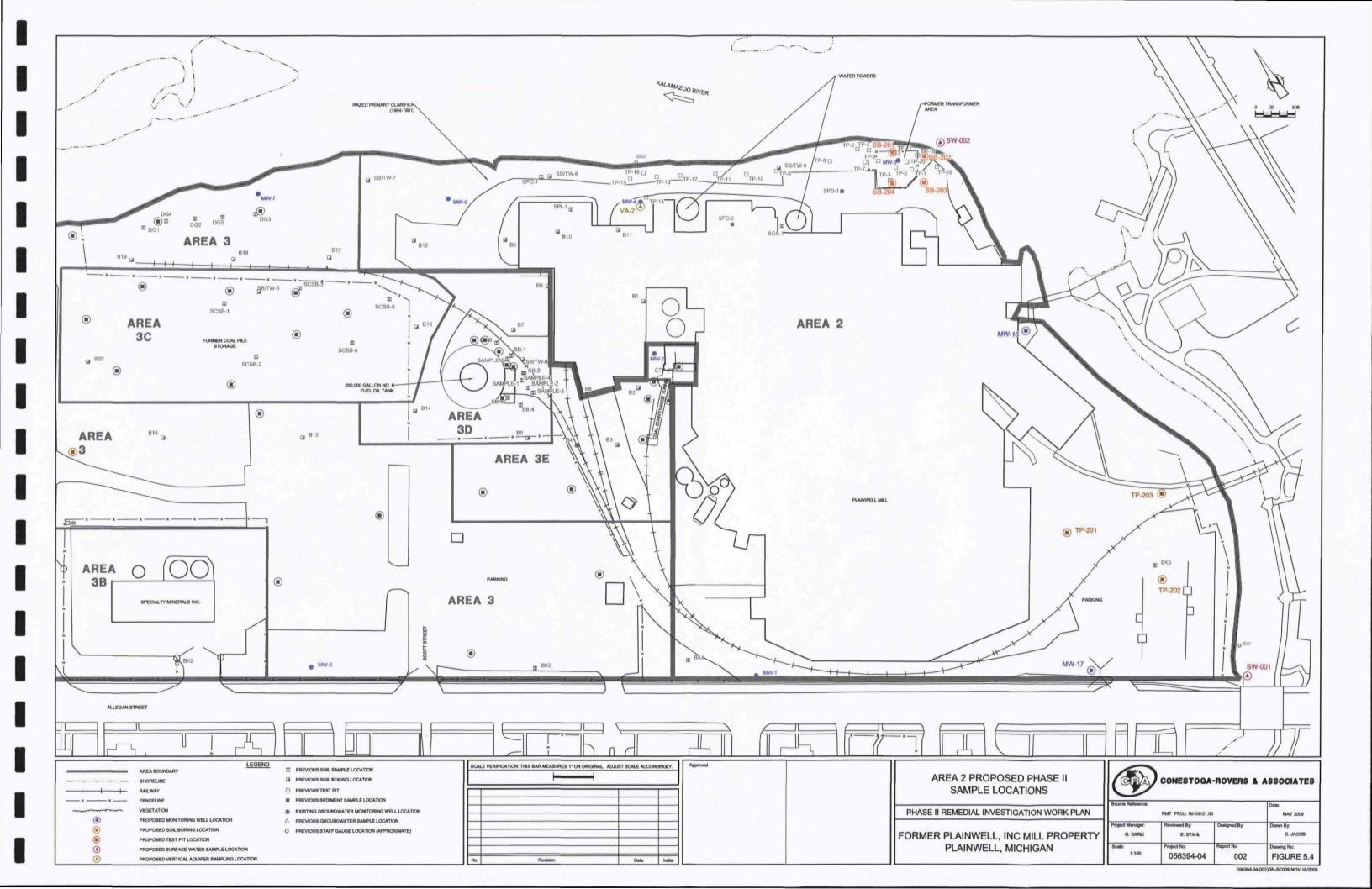
(1) SEDIMENT AND SURFACE WATER ARE NOT PRESENT ON-SITE. SEDIMENT AND SURFACE WATER OFF-SITE IN THE KALAMAZOO RIVER AND MILL RACE

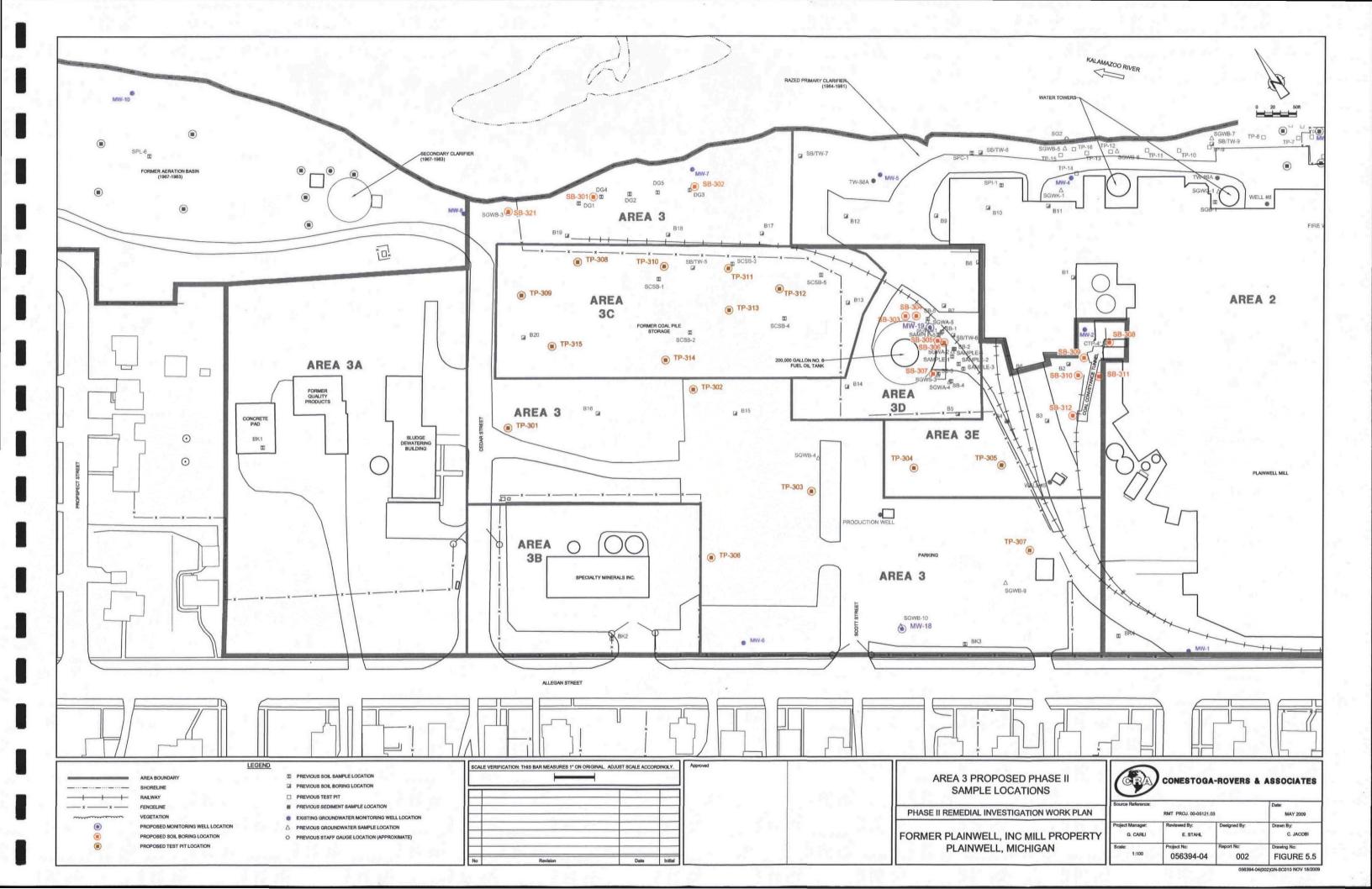
HUMAN HEALTH CONCEPTUAL SITE MODEL PHASE II REMEDIAL INVESTIGATION WORK PLAN FORMER PLAINWELL, INC MILL PROPERTY Plainwell, Michigan

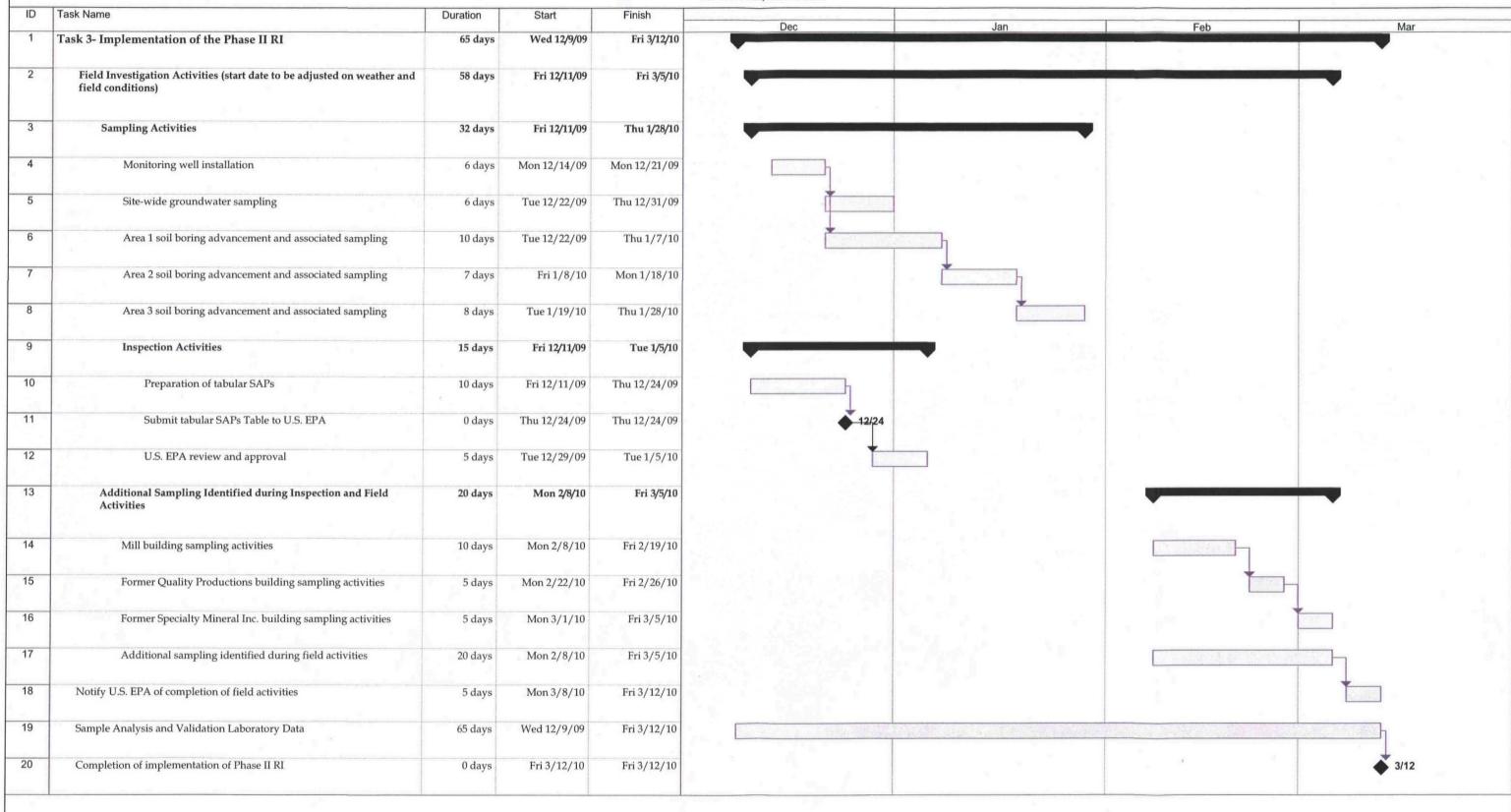



(1) SEDIMENT AND SURFACE WATER ARE NOT PRESENT ON-SITE AND ARE BEING DISCUSSED TO THE EXTENT THAT POTENTIAL IMPACTED GROUNDWATER DISCHARGES TO SURFACE WATER SEDIMENT AND SURFACE WATER OFF-SITE IN THE KALAMAZOO RIVER AND MILL RACE ARE BEING CONSIDERED UNDER SEPARATE SITE.


figure 3.5


ERA CONCEPTUAL SITE MODEL PHASE II REMEDIAL INVESTIGATION WORK PLAN FORMER PLAINWELL, INC. MILL PROPERTY Plainwell, Michigan





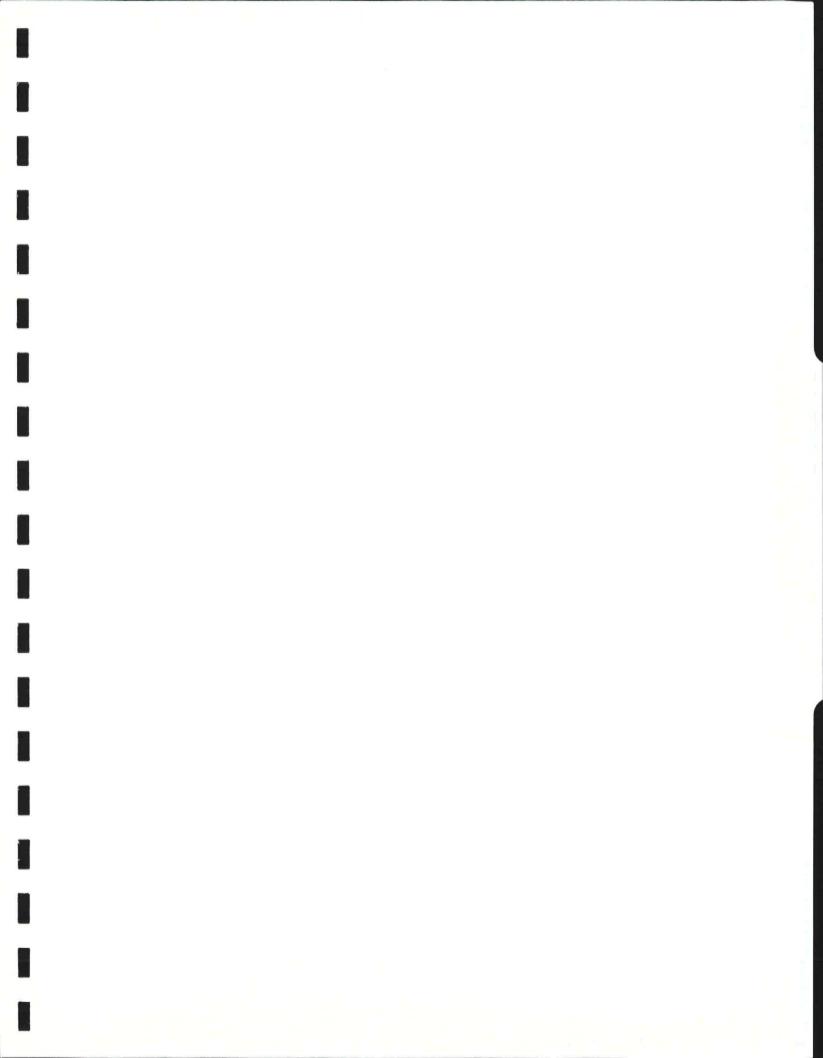


FIGURE 6.1 RI/FS PROJECT SCHEDULE PHASE II REMEDIAL INVESTIGATION WORK PLAN FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

AREA 1 - SUMMARY OF PROPOSED SAMPLING ACTIVITIES PHASE II REMEDIAL INVESTIGATION FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

	PROPOSED	ASSESSMENT LO	CATION	T	The state of the s		T				T 0	UALITY CONTROL SAI	MPLES	T momus
ACTIVITY/ LOCATION	DESIGNATION	TYPE	DEPTH (FT BGS)	RATIONALE FOR LOCATION SELECTION	SAMPLE/DATA COLLECTION DETAILS	SAMPLE MATRIX	FIELD SCREENING	LABORATORY PARAMETERS	SAMPLE LOCATIONS	INVESTIGATIVE SAMPLES		FIELD DUPLICATES	MS/MSDS	TOTAL NUMBER OF SAMPLES
Lagoon A through N	SB-106 through SB-133	Soil Boring	20	Confirmation and determination of paper waste					28	112	_	12	6	130
agoon J (SB-2)	MW-13	Monitoring Well Vertical Aquifer Testing	20 (MW)	Determine the groundwater chemistry at the depth of the residual waste buried within the former lagoon area.	*				1	4	7.	-	-	4
GGWB-2	MW-14	Monitoring Well	20	To determine background groundwater chemistry south of the lagoons				,	1	4	-	1	1	6
Former Secondary Clarifier	MW-15	Monitoring Well	20	To determine groundwater impacts associated with historical operations	- Collection of surface soil samples		-	TCL VOCs	1	4	-	-	-	4
Former Secondary Clarifier	SB-138 SB-139 SB-140 SB-141	Soil Boring	20	To determine extent of impact surrounding the former secondary clarifier	- Sampling Program 1 ⁽⁵⁾		Visual and	TCL SVOCs TAL Metals SPLP Metals (1)	4	16	-	2	1	19
Aeration Basin	SB-137	Soil Boring	20	To determine extent of impact surrounding the aeration basin		Soil	Olfactory Evidence of Impact and PID	PCBs	1	4		-	-	4
Areas adjacent to the agoons and Aeration Basin	SB-134 SB-135 SB-136	Soil Boring	20	To define historical morphing of the sizes of the lagoons and the aeration basin			Screening	General Chemistry (2)	3	12	. . .	1	-	13
North of Lagoon Area	SB-101 SB-102 SB-103 SB-104 SB-105	Soil Boring	20	To determine extent of potential paper waste north of the lagoon area adjacent to the Kalamazoo River					5	20	-	2	1	23
Wooded Area	SB-142 to SB-145 SS-100 to SS-107	Soil Boring/ Hand Auger	20	To confirm no impacts associated with historical operations within this area. Location of samples will be dependent based on inspection of the area.	- Collection of one surficial soil sample at all locations (SS and SB) -Sampling Program 2 ⁽⁶⁾ at proposed soil boring (SB) locations				12	20	_	2	1	23
Soil Physical Properties	SB-134 SB-135 SB-136 SB-137	Soil Boring/ Hand Auger	5	Collection of samples to determine the potential for vapor intrusion through native soil materials within the unsaturated zone	- Collection of one sample from what is field screened as native material within the vadose zone		1.0	Soil Physical Properties	5	5	NA	NA	NA	5
								Soil Sampling Total	61	201	0	20	10	231
Groundwater Sampling					- Completion of a monitoring									
MW-8, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, MW-15	-	Groundwater Sample	-		well inspection - Collection of groundwater levels and surface water levels (at associated staff gauges) - Collection of one groundwater sample per location	Groundwater	pH, Conductivity, Temperature, Dissolved Oxygen, ORP, Turbidity	TCL VOCs TCL SVOCs PCBs TAL Inorganics ⁽¹⁾	8	8	3,	1	1	13
MW-13	VA-1	Vertical Aquifer Sampling - Groundwater Samples	40	Complete vertical aquifer testing to determine groundwater conditions below the confining unit	- Collection of groundwater samples every 5 feet until the confining layer is reached or 40 feet bgs			TCL VOCs TCL SVOCs TAL Metals (filtered and unfiltered)	1	8	2	1		11
							Gro	undwater Sampling Total	9	16	5	2	1	24

Notes

Refer to Table 5.4 for Table Notes and Sampling Program Details

AREA 2 - SUMMARY OF PROPOSED SAMPLING ACTIVITIES PHASE II REMEDIAL INVESTIGATION FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

	PROPOSE	D ASSESSMENT LO		RATIONALE FOR LOCATION	SAMPLE/DATA COLLECTION						QUALITY CONTROL SAMPLES			TOTAL
ACTIVITY/ LOCATION	DESIGNATION	TYPE	DEPTH (FT BGS)	SELECTION	DETAILS	SAMPLE MATRIX	FIELD SCREENING	LABORATORY PARAMETERS	SAMPLE LOCATIONS	INVESTIGATIVE SAMPLES	TRIP BLANKS	FIELD DUPLICATES	MS/MSD	NUMBER OF SAMPLES
Soil Sampling		The state of				EL Patrick of		人工 有 5 放 计数						(length)
TP-17 and TP-18	SB-201 SB-202 SB-203 SB-204	Soil Boring	20	Confirmation of noted potential contamination associated with the former Transformer Pad	- Collection of one surfical soil samples from each location - Sampling Program 1 ⁽⁵⁾				4	16	-	1	1	18
Mill Building Outflow Points	TBD	Hand Auger	2	Inspection and confirmation of capped outflows from the Mill Buildings	- Surface sampling only to be conducted if impacts are suspected from field screening			TCL VOCs TCL SVOCs TAL Metals SPLP Metals ⁽¹⁾ PCBs General Chemistry ⁽²⁾	4*	4*	-	1*	1*	6*
Mill Building	TBD	Hand Auger	2	Inspection of soils around the perimeter of the Mill Buildings	- Surface sampling only to be conducted if impacts are suspected from field screening		Visual and Olfactory		5*	5*	-	-	-	5*
North East of Mill Building	MW-16	Monitoring Well	20	Installation of monitoring well to determine hydraulic connection with the Mill Race	- Sampling Program 1 ⁽⁵⁾ -Collection of one surficial soil sample	Soil	Evidence of Impact and PID Screening	General Chemistry	1	4	-	-	-	4
South Parking Lot	MW-17	Monitoring Well	20	Installation of monitoring well to determine hydraulic connection with the Mill Race	- Sampling Program 2 ⁽⁶⁾ - Collection of one surficial soil sample				1	4	-	1	-	5
South Parking Lot and BK5	TP-201 TP-202 TP-203	Test Pit	10	-Confirm the presence of fill material beneath the parking lot area -Determine potential impacts with historical activities	- Sampling Program 2 ⁽⁶⁾ - Collection of surface samples at all test pit locations				3	12	-	1	1	14
Soil Physical Properties	SB-201 SB-202	Soil Boring/ Hand Auger	5	Collection of samples to determine the potential for vapour intrusion through native soil materials within the unsaturated zone	- Collection of one sample from what is field screened as native material within the unsaturated, vadose zone			Soil Physical Properties ⁽³⁾	2	2	NA	NA	NA	1
,								Soil Sampling Total	20	47	0	4	3	53

AREA 2 - SUMMARY OF PROPOSED SAMPLING ACTIVITIES PHASE II REMEDIAL INVESTIGATION FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

	PROPOSEI	ASSESSMENT LO		RATIONALE FOR LOCATION	SAMPLE/DATA COLLECTION DETAILS		FIELD SCREENING	LABORATORY PARAMETERS			QUALITY CONTROL SAMPLES			TOTAL
ACTIVITY/ LOCATION	DESIGNATION	TYPE	DEPTH (FT BGS)	SELECTION		SAMPLE MATRIX			SAMPLE LOCATIONS	INVESTIGATIVE SAMPLES	TRIP BLANKS	FIELD DUPLICATES	MS/MSD	NUMBER OF SAMPLES
Groundwater Sampling	r attenti	(A) (A) (A)		3. 14. 15. 14. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15										
MW-1, MW-3, MW-4, MW-5, MW-16		Groundwater	_	To Confirmation of on-Site	- Completion of a monitoring well inspection - Collection of groundwater and			TCL VOCs TCL SVOCs	6	*				11
MW-17	_	Sample		groundwater chemistry	surface water levels (at associated staff gauges) - Collection of one groundwater sample per location	Groundwater	pH, Conductivity, Temperature, Dissolved Oxygen, ORP, Turbidity	PCBs TAL Inorganics	· ·					
MW-4	VA-2	Vertical Aquifer Testing- Groundwater Samples	40	Complete vertical aquifer testing to determine groundwater conditions below the confining unit	- Collection of groundwater samples every 5 feet until the confining layer is reached or 40 feet bgs			TCL VOCs TCL SVOCs TAL Metals (filtered and unfiltered)	1	8	2	1	-	11
								Groundwater Sampling Total	7	14	5	2	1	22
Surface Water Sampling				医拉斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯斯					714 医 型 型 20 14 ft					
Mill Race and Kalamazoo River	SW-001 SW-002	Surface Water Sample	-	Confirm surface water quality of the Mill Race and Kalamazoo River related to mercury. Determine analytical data needed for data comparison.	- Collection of two surface water samples -Collection of surface water levels	Water	pH, Conductivity, Temperature, Dissolved Oxygen, ORP, Turbidity	Low level Mercury Methyl Mercury Hardness	2	2	-	1	-	3
								Surface Water Sampling Total	2	2	0	1	0	3

^{*}Refer to Table 5.4 for Table Notes and Sampling Program Details

AREA 3 - SUMMARY OF PROPOSED SAMPLING ACTIVITIES PHASE II REMEDIAL INVESTIGATION FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

	PROPOSE	D ASSESSMENT LO		RATIONALE FOR LOCATION	SAMPLE/DATA COLLECTION						QUALITY CONTROL SAMPLES			TOTAL
ACTIVITY/ LOCATION	DESIGNATION	TYPE	DEPTH (FT BGS)	SELECTION	DETAILS	SAMPLE MATRIX	FIELD SCREENING	LABORATORY PARAMETERS	SAMPLE LOCATIONS	INVESTIGATIVE SAMPLES	TRIP BLANKS	FIELD DUPLICATES	MS/MSD, MS/DUP	NUMBER C SAMPLES
oil Sampling						1000								100 1
G3 and DG4 (Area 3)	SB-301, SB-302	Soil Boring	20	Confirmation of impact noted in historical sampling	- Collection of one surface soil sample at each borehole location - Sampling Program 1 ⁽⁵⁾				2	8	-	1	1	10
SGWB-10	MW-18	Monitoring Well	20					4	1	4	-	-	-	4
SGWB-3	SB-321	Soil Boring	20						1	4	-	1	-	5
oal Pile Storage Area Area 3C)	TP-308 TP-309 TP-310 TP-311 TP-312 TP-313 TP-314 TP-315	Test Pit	10	Confirmation of extent of coal impacts	- Collection a minimum of 5 surface soil samples - Sampling Program 2 ⁽⁶⁾	Soil E			8	29	_	2	1	32
o. 6 Fuel Oil Tank Area Area 3D)	SB-303 SB-304 SB-305 SB-306 SB-307	Soil Boring	10	Confirmation of impacted soil removal activities	- Sampling Program 3 ⁽⁷⁾		Visual and Olfactory Evidence of Impact and	TCL VOCs, TCL SVOCs TAL Metals SPLP Metals ⁽¹⁾ PCBs General Chemistry ⁽²⁾	5	20	-	3	1	25
GWA-5 (Area 3D)	MW-19	Monitoring Well	20	Confirmation of historical groundwater impacts	- Collection of one surficial soil sample- Sampling Program 2 ⁽⁶⁾		PID Screening		i	4	-	-	-	4
ormer Coal Tunnel Area 3E)	SB-308 SB-309 SB-310 SB-311 SB-312	Soil Boring	10	Confirmation of potential contamination noted in historical sampling	- Collection a minimum of 3 surface samples - Sampling Program 2 ⁽⁶⁾				5	18	-	1	1	20
ndeveloped Lands	TP-301 TP-302 TP-303 TP-304 TP-305 TP-306 TP-307	Test Pit	10	-Confirm the presence of fill material beneath the parking lot area -Determine potential impacts with historical activities	- Collection of surficial soil samples - Sampling Program 2 ⁽⁶⁾				7	28	_	2	1	31
oil Physical Properties Judeveloped Lands)	TP-302	Soil Boring/ Hand Auger	5	Collection of samples to determine the potential for vapour intrusion through native soil materials within the unsaturated zone	- Collection of one sample from what is field screened as native material within the vadose zone			Soil Physical Properties ⁽³⁾	1	1	NA	NA	NA	1
							•	Soil Sampling Total	31	116	0	10	5	131
roundwater Sampling				Secretary of the Control of					200 (100 HONE)	SCOTAL TO				
IW-2, MW-6, MW-7, IW-18, MW-19		Groundwater Sample		Confirmation of on-Site groundwater chemistry	- Completion of a monitoring well inspection - Collection of groundwater and surface water levels (at associated staff gauges) - Collection of one groundwater sample per location	Water	pH, Conductivity, Temperature, Dissolved Oxygen, ORP, Turbidity	TCL VOCs TCL SVOCs PCBs TAL Inorganics ⁽⁴⁾	5	5	2	1	1	9
								Groundwater Sampling Total	5	5	2	1	1	9

Notes

Refer to Table 5.4 for Table Notes and Sampling Program Details

REMEDIAL INVESTIGATION APPROACH- NOTES PHASE II REMEDIAL INVESTIGATION FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

(1) Soil samples for analysis of SPLP will be collected and placed on hold pending results of TAL metal analysis

(2) General Chemistry - Nitrogen compounds and phosphorous

(3) Soil Physical Properties- grain size analysis, dry bulk density, porosity, moisture content, fraction of organic carbon

(4) TAL Inorganics- TAL Metals plus low level mercury, methly mercury, and cyanide

(5) Sampling Program 1 - One surficial soil sample will be collected as indicted in Tables 5.1 to 5.3

- One biased soil sample will be collected from what has been deemed fill material from a depth of 2 to 10 feet bgs based on field screening. If no impacts are noted, one soil sample will be collected from 0 to 2 feet above the interface between the fill and native material within the vadose zone

-One soil sample from 0 to 2 feet below the observed impact will be collected. If no impact is observed the soil sample will be collected from 0 to 2 feet below the interface of the fill/ native material within the vadose zone

- One soil sample will be collected from the vadose zone, 0 to 2 feet above the saturated zone.

(6) Sampling Program 2 - One surficial soil sample will be collected as indicted in Tables 5.1 to 5.3

- If no impact noted, a discrete soil sample will be collected from 0 to 2 feet above below the interface of the vadose and saturated zone. If impact noted one soil sample will be collected within 2 to 10 feet bgs and a third sample collected from 0 to 2 feet above the interface of vadose and saturated zone.

(7) Sampling Program 3 - One surficial soil sample will be collected

- One soil sample will be collected from the fill material which is expected to be at approximately depths of 2 to 10 feet bgs based on field screening methods. Soil borings not exhibiting any evidence of impact will be sampled at 0 to 2 feet above the interface of fill/native material within vadose zone

- One soil sample will be collected from 0 to 2 feet below the observed contamination. If no evidence of impact is observed the soil sample will be collected from 0 to 2 feet below the interface of fill/native material within vadose zone

- One soil sample will be collected from vadose zone at 0 to 2 feet above the saturated zone

* Sampling to be conducted if necessary, the noted number of locations are subject to change depending on field findings.

bgs - below ground surface

MS/MSDs - Matrix Spike/Matrix Spike Duplicates

SPLP - Synthetic Precipitation Leaching Procedure

TAL - Target Analyte List

TCL - Target Compound List

VAS- Vertical Aquifer Sampling VOC - Volatile Organic Compound

SVOC - Semi-Volatile Organic Compound

TBD - To be determined

PCBs - Polychlorinated Biphenyls

ORP - Oxidation-Reduction Potential

PID - Photoionization Detector

NA - Not Applicable

- Surficial Soil sample will be collected from 0 to 1 foot bgs. If non-soil materials are present (i.e., gravel fill or concrete slab) the soil sample will be collected from 0 to 1 foot below the non-soil material.

- Field Screening will consist of PID readings to determine the presence of undifferentiated volatile organic vapors, visual screening for lithologic changes, stained soils, residuals, and olfactory evidence of impacts

- Collect soil samples on a continuous basis at 2 feet intervals

- Collection of all samples as per Field Sampling Plan and Quality Assurance Project Plan including the references listed below

- Samples to be submitted on a regular turn around time

- All necessary MS/MSDS and Field Duplicates will be added where required

- Groundwater samples will be collected using low flow techniques

- VAS samples will be collected with a bailer and TAL Metals will filtered and unfiltered for metals analysis

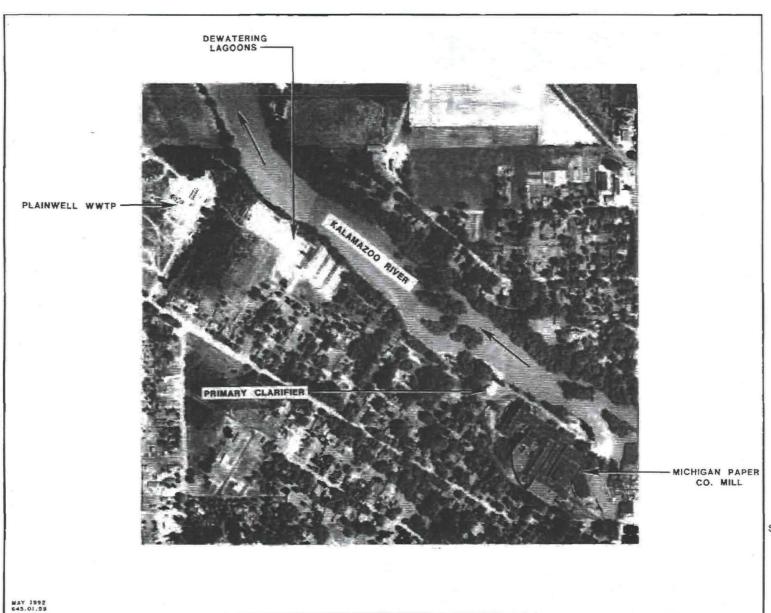
- Test pit length is 5 to 10 feet

Field Sampling References:

rielu Santphing Kererences.		
Sample Type	Reference Document	Procedure
Soil Sampling with Direct Push Sampler	FSP	Standard Operating Procedure F-5
Surficial Soil Sampling	FSP	Standard Operating Procedure F-6
Excavation and Test Pits and Test Pit Soil Sampling	FSP	Standard Operating Procedure F-8
Photoionization Detector (PID) Screening	FSP	Standard Operating Procedure F-9
Monitoring Well Installation	FSP	Standard Operating Procedure F-15
Groundwater Sampling	FSP	Standard Operating Procedure F-11
Surface Water Sampling	FSP	Standard Operating Procedure F-16
Staff Gauge Installation and Measurement	FSP	Standard Operating Procedure F-10
Vertical Aquifer Sampling	FSP	Standard Operating Procedure F-17
Sample Handling and Analysis/ Quality Assurance	FSP/QAPP	Section 4/ Section 4.4.4 (with reference to QAPP Worksheets)
Sample Labeling	FSP	Section 3.1
Chain-of-Custody Records	FSP	Section 3.3
Management of Investigation-derived Waste	FSP	Section 6.0
Field Physical Measurements/ Surveying	FSP	Section 5.0 / Section 5.1
Hand Auguring	FSP	Standard Operating Procedure F-6

APPENDIX A

AERIAL PHOTOGRAPHS

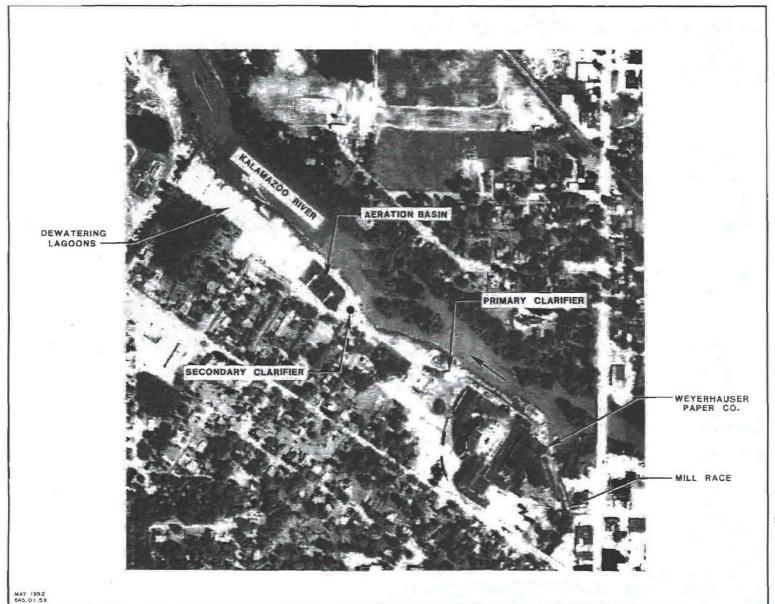

KALAMAZOO RIVER STUDY GROUP

ALLIED PAPER INC. / PORTAGE CREEK / KALAMAZOO RIVER SUPERFUND SITE

DESCRIPTION OF THE CURRENT SITUATION

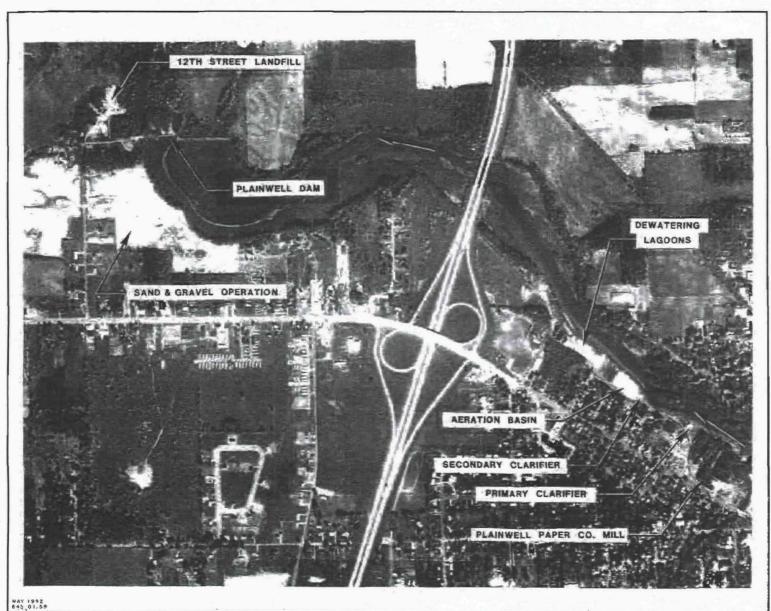
1955 AERIAL PHOTOGRAPH SIMPSON PLAINWELL PAPER COMPANY

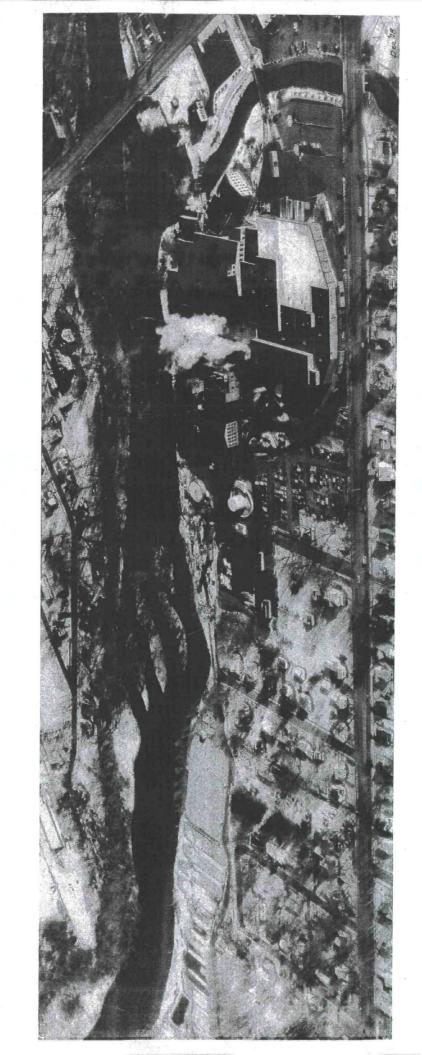
KALAMAZOO RIVER STUDY GROUP


ALLIED PAPER INC. / PORTAGE CREEK / KALAMAZOO RIVER SUPERFUND SITE

> DESCRIPTION OF THE CURRENT SITUATION

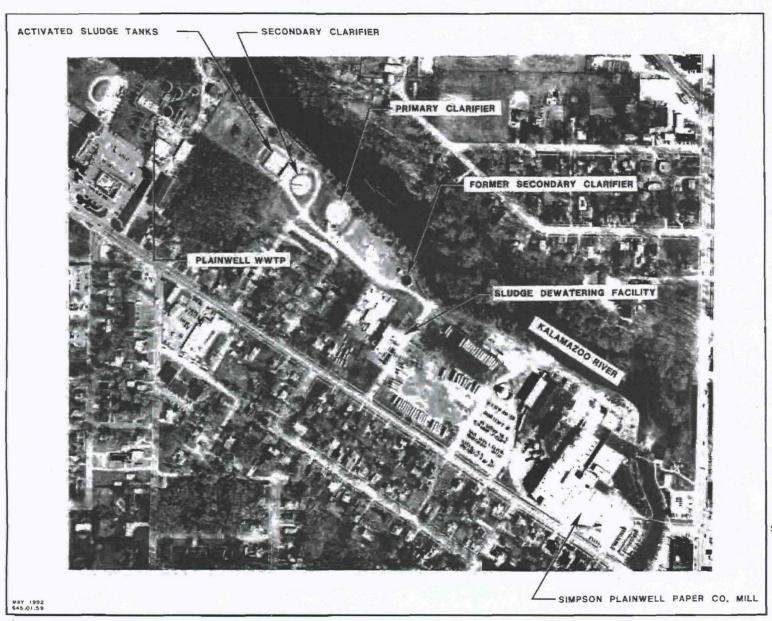
1967 AERIAL PHOTOGRAPH SIMPSON PLAINWELL PAPER COMPANY


KALAMAZOO RIVER STUDY GROUP


ALLIED PAPER INC. / PORTAGE CREEK / KALAMAZOO RIVER SUPERFUND SITE

DESCRIPTION OF THE CURRENT SITUATION

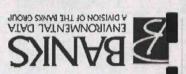
1974 AERIAL PHOTÖGRAPH SIMPSON PLAINWELL PAPER COMPANY AND 12TH STREET LANDFILL


KALAMAZDO RIVER STUDY GROUP ALLIED PAPER INC. / PORTAGE CREEK / KALAMAZOO RIVER SUPERFUND SITE

> DESCRIPTION OF THE CURRENT SITUATION

1991 AERIAL PHOTOGRAPH SIMPSON PLAINWELL PAPER COMPANY

BLASLAND & BOUCK ENGINEERS, P.C.


2005 DigitalGlobe 1"=500'

1,=200, NZGS 1821

	APPENDIX B
]	HISTORICAL BOREHOLE LOGS
56394 (2)	

=
_
<u></u>
•
_
_
_
_
_
=
•
_
_
_
_
_
_
_
-
-
-
-
_

APPENDIX B

STRATIGRAPHIC INFORMATION
AREA 1 – FORMER WASTEWATER LAGOON AREA

LAGOON A Date Start/Finan: 06/07/94 / 06/07/94 Boring No. SPL-13 Northing: Orking Company: Mateco Easting Driller's Name: Bob Dreyer Borehole Depth; 18 ft. Site: Driling Method: Hollow Stem Auger Ground Surface Elev. 725.9 ft. Simpson Palinwell Hill Bit Size: N/A-In. Auger. Size 3.25-In Flig Type: CIAE-45A Clent Allied Paper Inc./Portage Creek/ Spoon Size, N/A-in. Kalamazoo River Superfund Site Hammer Weight: N/A-Ib *¹} Geologist David W Lay, Height of Fait NVA-In. è 14.60 4 Test Sample/Int/Type 1. July 2. Jul PIO (ppm) Headspace Geotechnical Stratigraphic Borang ELEYATION Sample Rut Number 걷 Construction Recovery Description. Blows/8 z gs eëvalion 725.9 ft GROUND SURFACE 4 layer dark brown SILT some fine 558008 sand and rootlets loose damp Cement/bentonite 725 _ 4 15 (TOPSOIL) 8 grout backtill to 550007 4 IR O Brown tine SAND some medium to 5 coarse sand little slit loose moist (FILL) j B.O 2 5 2 Q.B 720 Grading wet 5 12 13 8

8 Ю 22 14 12 12 - 10 5 *71*5 5 14 10 5 5 9 7 13 14 8 В i layer black COAL ASH Brown/grey fine SAND and grey PAPER FIBERS loose wet 558008 8 1.2 15

Baring Illied with bentonite upon completion

Proect 84514

BLASLAND, BOLOX & LEE ENGINEERS & SCIENTISTS

> Script BSL-bore Date 07/05/94

Remarks.

Saturated Zones

Date / Time Elevation Depth

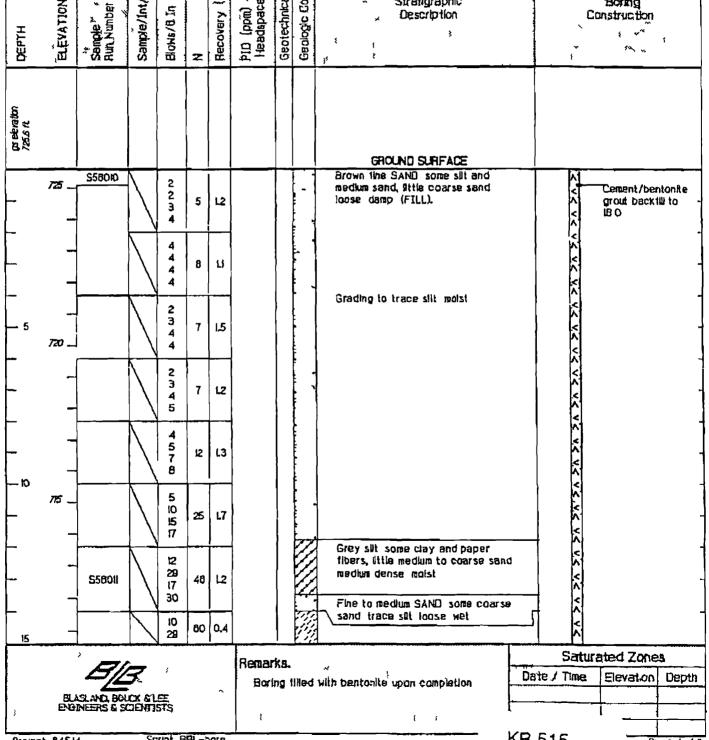
KB 515

2eg9 | 0| 2

Boring No. SPL-13 Clent Allied Paper, Inc /Portage Creek/ Kalamazoo Alver Supertund Site Total Depth = 18 ft. Ste Simpson Painwell Mit Geoternin Test Sample/Int/Type PID (ppm) Headspace Boring Blows/8 In Recovery Construction 4 7 558008 8 1.2 710 Black stained fine to medium SANO 5 7 little coarse sand and fine gravel, trace slit loose wet 558009 17 Ю il End of boring at 18.0 BGS 705 700 -30 695 Saturated Zones Remarks. 19 Th Date / Time Blevation Depth BLASLAND, BOUCK & LEE ENGINEERS & SCIENTISTS KB 515 Script 69 -bare Date, 07/05/94 Project 845.14 Page 2 01

LAGOON *> *₆ Date Start/Finant 08/08/94 / 08/08/94 Northing Bortha No. SPL-3 Easting Draing Company Mateco * + Siec * Barehole Depth: 18 11, Draer's Name: Bob Dreyer Simpson Painwell Mill Bround Surface Elev. 722 0 ft. Orling Method Hollow Stem Auger Bit Stree N/A-in. Auger Size 3.25-in Clent RIG Type: CHE-46A Alled Paper Inc./Portage Creek/ Spoon Size N/A-In. Kalamazog Alver Superfund Site Hammer Weight N/A-It Height of Fat N/A-in · Geologiet: David VL Lay Sample/Int/Type ¥χ Recovery (It.) Geotechnical [™]≈Stratigrapbic Boring Shriple Run Number ELEVATION BIOWS/8 In Description Construction DEPTH 7 GROUND SURFACE Dark brown SILT little fine sand trace clay and rootlets loose moist Cament/benton*e 4 (TOPSOIL) grout backfll to Ю **L4** LO 8 15.0 8 Grawn fine to medium SANO little coarse sand trace slit loose moist 720 (FILL) 2 3 12 LO 7 4 5 2 14 0.5 2 Black SILT and COAL ASH little fine to coarse sand and line gravel, 5 775 Ļ3 CB 12 trace grey paper fibers loose moist (FILL) 7 3 Li 5 28 2 Black/grey COAL ASH and medium to 10 coarse SAND some grey clay and 28 41 LO 3.1 paper fibers. Uttle fine gravel and 12 line sand loose wet (FILL) Ю ממ Black medium to coarse SAND some line angular gravel little slit loose 8 14 L 3.5 wet (FILL) 8 10 Brick fragments at 13.5 BCS Stack rounded fine to coarse SAND 4 8.0 12 4 B some fine gravel, trace clay loose, Saturated Zones Remarks. Date / Time Elevation Depth Boring "lilad with bantonite upon completion" GLASLAND, BOUCY & LEE ENGINEERS & SCIENTISTS 452 Script 98L-bo e Data 07/05/94 Pro ect 845.A Page 012 **KB** 515

Boring No. SPL-3 Clent Allied Paper Inc./Portage Creek/ Kalamazoo River Superfund Site ~ Total Depth = 18 ft. " Simpson Painwell Mill Geotechnical Tes Sample/Int/Type Più (ppm) Headspace Sample Flyn Number **Boring** ELEYATION BLOWS /8 In. Recovery Construction DEPTH z ۸ د 12 œ0 4.6 End of boring at 18.0 BGS 705 700. 695 690 35 Saturated Zones Remarks." Date / Time Elevation Depth BLASLAND, BOLCK & LEE ENGINEERS & SCIENT'STS


Project 845. 4

Script 88L-bore Date 07/06/84

KB 515

Page 2 of 2

LAGOON C Barting No. SPL-4 Date Start/Fjylatii 08/07/94 / 08/07/94 Northing Drilling Company, Mateco Easting Borehole Depths 18 11." Driter's Name: Bob Orever Site Ground Surface Bey. 725.6 ft. Drilling Method: Hollow Stem Auger Simpson Palnwell Hill Bit Size: N/A-In. Auger Size 3.25-in Calent ^ Rig Types Che-45A Alled Paper Inc./Portage Creek/ Kalamazoo Alver Superfund Site 3 -05/74 . 79 Spoon Start N/A-in_ Harmer Weight: N/A-th Geologiat: David W Lay Helatit of Fall N/A-In 3,8 Geotechnical Test Sample/Int/Type Geologic Column Ξ PIO (ppm) ~ Headspace Stratigraphic Boring ELEVATION BIOME/B In Recovery Description Construction 22

Project 84514

Script BBL-bore Date: 07/08/84

KB 515

Page 1 of 2

Clent Boring No. SPL-4 Allied Paper Inc./Portage Creek/ Kalamazoo Alver Superfund Site Total Depth = 18 ft. Simpson Palowell Mill Ç **Geotechnical Test** Sample/Int/Type Stratigraphio PID (ppm) Headspace Boring ELEVATION Glows/6 In Recovery Construction DEPTH Black line SAND and SILT Ritle 31 80 710 0.4 medium to coarse sand and coal 18 stag loose wat Grey/brown medium to coarse SAND 5 some line sand little line g avel S56012 12 0.7 7 trace sill loose wet 10 End of boring at 18.0 BGS -20 705 700. -30 695 Saturated Zones Remarks. Date / Time Sievation Depth BLASLAND, BOUCK & LEE ENGINEERS & SCIENT STS

Project 845.14

Script. BBL-bore Date. 07/08/84 KB 515

Page 2 01 2

LAGOON D

Date Start/Finish: 08/08/94 / 06/08/94
Drilling Company: Mateco
Driller's Name: Bob Dreyer
Drilling Method: Hollow Stem Auger
Bit Size: N/A-in Auger Size 4.25-in
Rig Type: CME-45A.
Spoon Size: N/A-in.
Hammer Weight: N/A-in
Heloht of Falt N/A-in

Script BBL-bore Date 07/05/94

Project 845.14

Northing: Easting: Borehole Depth: 14 ff. Ground Surface Elev., 721,4 ft.

Geologist Dayld W Lay

Site: Simpson Panwell Mil

Borton No. SPL-12

Alled Paper Inc. /Portage Creek/ Kalamazoo River Superfund Site

KB 515

Page 1 of 1

* " 3 8 TH

Septectinical Test Sample/Int/Type Geologic Column PIO (ppm) 🚉 Headspace Ξ Stratigraphic Bortna EVATION s **Repovery** Description > Construction BIOWS/8 1 7 3 40 × * z } 1 **GROUND SURFACE** Brown fine to medium SAND some coarse sand trace line gravel, Cement/bentonite ٥ loose moist (FILL). 17 LO grout backill to 720 140 8 2 2 3 5 12 4 2 3 1 0.5 4 Augered through cobbles. 75 Ď, Ó, O, NR Brown tine to medium SAND little coarse sand and fine gravel trace Ø 8.0 2 stit loose moist (FILL) 11 12 "I" layer of brown SILT and CLAY Ø Ю 20 LI 10 סת 10 Black stained rounded, medium to Э coarsa SANO some fine gravel little 5 12 fine sand loose wet 7 11 End of boring at 14 0 BGS 15 Saturated Zones Remarks. Date / Time Elevation Depth No analtylear samples submitted from this boring Boring filled with benjonite upon BLASLAND, BOUCY & LEE completion

LAGOON G

Date Start/Finish. 08/08/94 / 08/08/94
Drilling Company Mateco
Driller's Name: Bob Dreyer
Drilling Method: Hollow Stem Auger
Bit Size: N/A-in. Auger Size 3.25-in
Rig Type: CME-45A
Spoon Size: N/A-in.
Hammer Weight: N/A-ib

Height of Falt N/A-in

Northing: Easting: Borehole Deptit: 12 ft. Ground Surface Elev: 720.8 ft.

Stee Simpson Painwell Mill Clent Alled Paper Inc Portage Creek

Boring No. SPL-11.

Geologiat David W Lay

Alled Paper Inc./Portage Creek/ Kalamazoo Alver Superlund Site

<u> </u>			-						_	- 3				
DEPTH	ELEVATION	Semple Run Number	Sample/Int/Type	Blows/8 In	7	Recovery (11.)	Pio (ppm) Headspace	Geotechnical Test	Geologic Column	Stratigraphic Description	****		Boring nstruction	
gs eleration 720.8 ft.										GROUND SURFACE				
	720 <u> </u>	5580(5		4 7 8 10	15	12	B.O			Brown line to medium SAND little coarse sand trace slit loose, damp (FILL)	P	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Cament/ben grout backfl (2.0	
<u>-</u>	-			11 11	21	12	Lô					V		
5	- 716			10 12 13 14	జ	13	2.1	 		Grey tine to coarse SAND some sill trace gravel dense moist	It	× × × × × × × × × × × × × × × × × × ×		
_	, , , , , , , , , , , , , , , , , , ,			5 9 7 8	ú8	O.B	1.9		•	Brown medium to coarse SAND som silt loose moist Grey line SAND and SILT some coarse sand and line gravel densi	{	V > V > V '		
_ _10	_	558OHB		3 4 4 5	8	1.5	2.7			Brown medium SAND some coarse send and time gravel little silt loos moist Black time SAND and SILT some	\$8	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		}
-	_ ט <i>וד</i> 	558047		4 4 8 7	10	L3	21	1		coal ash little coarse sand and fin gravel, loose wet Grey CLAY and PAPER FISERS, so wet	\	⟨ ∨ ⟨ ∨ ⟨ 		
-	7									Black COAL ASH Brown/grey medium to coalse SAN rounded little fine sand and grave trace silt loose wet End of boring at 12.0 BGS				
15							<u> </u>				,	······································		
			<i></i>				Remar	ks.					ted Zone	
	D1 4	41 VV D BW	J.	EC.			Borl	ng 1	illed	with bartonite upon completion	L Datt	e/Time	Elevation	Lepth
3	ENG)	SLAND BOT NELTS & S	mêss	sīs										
Frole	et 845.k	4	So Da	ript. S te 07	3I	Dore 184	<u> </u>			K	(B 5	15	<u> </u> Pa	ge loi

LAGOON H]

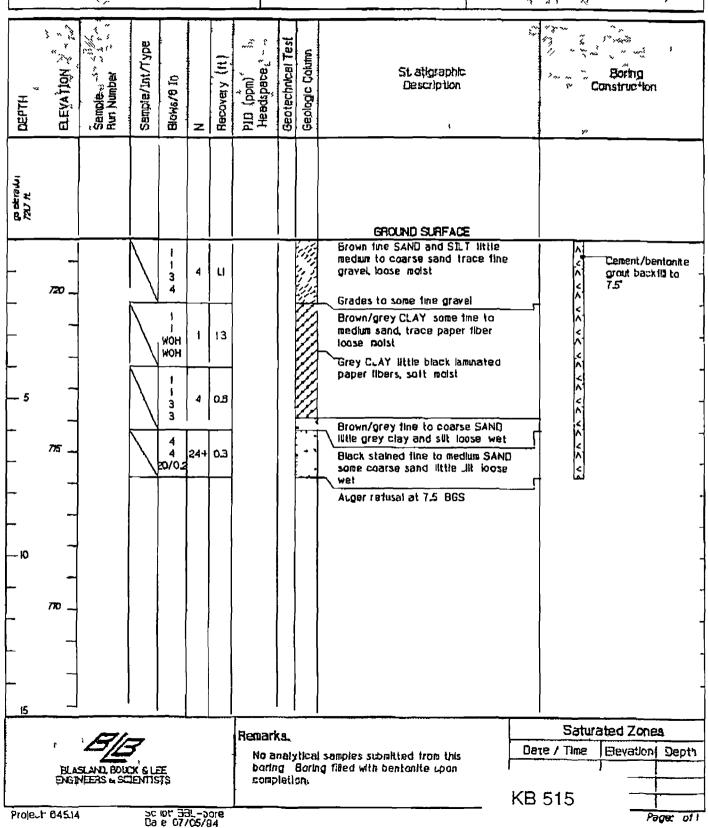
Date Start/Finish, 06/06/94 / 06/06/94
Drilling Company: Mateco
Driller's Name: Bob Dreyer
Drilling Method: Hollow Stem Auger
Bit Size: N/A-in. Auger Size: 3.25-in.
Rig Type: CHE-45A
Spoon Size: N/A-in.
Hammer Weight: N/A-in.
Height of Fait N/A-in.

Northing: Easting: Borahole Depth: 15 ft. Ground Surface Elev., 721.0 ft.

Site: Simpson Palnwell Mill

Bortna No. SPL-10

Cleni:


Allied Paper Inc./Portage Creek/ Kalamazoo River Superfund Site

Geologiat David W Lay

Eury. Septechnical Test Sample/Int/Type Geologic Column Recovery (ft) Rid (ppm) Headspace Stratigraphic Boring EVATION Blows/8 In Description Construction Z ga ekkraton 720 ft GROUND SURFACE Brown/grey SILT and tine to medium SAND trace paper fibers loose Cement/bentante 5 720 damp (FILL) grout bankfill to Ю ы 5 15,0 layer black CLAY and PAPER FIBERS. Brown line SAND little medium to coarse sand and silt loose moist (FILL) 5 0.5 Ø Brown SILT some tine to medium sand trace grey paper fibers loose moist (FILL) . 5 Black stained line SAND and SILT 3 9 trace coal fragments and gravel 3 775 loose moist 3 Grades to wet 8 18 12 В Ю 5 Ð 12 NR 8 10 5 8 13 NR 7 10 Black/grey fine to medium SAND 3 little coarse sand trace slit loose 4 8 15 4 "2" layer coarse and and gravel 15 Saturated Zones Remarks. ş Date / Time Elevation Depth No analytical samples submitted from this boring Scring filled with benionite upon BLASLAND, BOUCH & LEE ENGINEERS & SCIENTISTS completion Sc lpt 88L-bore Date, 07/08/94 KB 515 P aject 845.14 Page I of I

LAGOON I Northing Date Start/Final, 08/03/94 / 08/03/94 Borting No. SPL-BA Easting Drilling Company Hateco Borehole Depth: 80 ft. Drier's Name: Bob Dreyer Site Simpson Painwell Mill Drilling Method: Hollow Stem Auger Ground Surface Elev. 7217 ft. Bit Sze N/A-h. Auger Size 3,25-in Clent RIC Type: CHE-45A Alled Paper Inc./Fortage Creek/ Spoon Sizer N/A-In. Kalamazoo River Superfund Site Hammer Welcht N/A-Ib Geologist David W Lay Height of Falt N/A-In Test Sanple/Int/Type PIO (ppm) ... Headspace Geotechnical Stratographic 1 35 1 Boring ELEYATION Sample Run Number 5 Recovery Description Construction ELO-W6/8] z GROUND SURFACE Brown SILT some line to coarse 2 sand trace line gravel tocse Cement/pentonite 3 ÓВ damp 8 3 Đ Q, Dark brown line to medium SAND 3 720 and sill trace paper tibers and coal stag loose moist 2 Black COAL ASH loose, most 2 5 | L0 3 Brown the SAND some sot little medium to con se sand loose moist 3 3 - 5 7 L 2' layers of black coal ash and grey paper fibers at 51 and 5.5 BGS End of boring at 80 BGS 75 710 15 Saturated Zones Remarks. Date / Fme Elevation Depth No analytical samples submitted from this boring. Boring filled with bentonite wan BLASLAND, BOLCK & LEE ENGINEERS & SCIENTISTS completion KB 515 Script 38' -pare Date 0:/05/84 Project 845.14 Page Lot I

LAGOON I Date Start/Finish, 06/03/94 / 08/03/84 **Northings** Boring No. SPL-88 Orlling Company Mateco Esstince Drifer's Name: Bob Oreyer Barehole Depth: 75 ft. Site: Drilling Method: Hollow Stem Auger Ground Surface Eleva 7217 It. Simpson Painwell Mill Bit Size: N/A-in. Auger Size 325-in Bits Type: CHE-45A Clent Spoon Size: N/A-In. Alled Paper Inc /Portage Creek/ . Hammer Neight: N/A-Ib Kalamazoo Alver Supertund Site Geologiat David W Lay Helant of Fat N/A-In s

LAGOON J Date Start/Finish, 08/03/94 / 08/03/94 Northing Borton No. 5PL-2 Earling Drilling Company: Mateco Driller's Name: Bob Oreyer Barehole Depth: 14 ft. Drilling Method. Hollow Stem Auger Ground Surface Elev., 7212 ft. Simpson Painwell Mill Bit Szer N/A-In. Auger Size + 3.25-in RIG Type: CME~46A Clent Allied Paper Inc../Portage Creek/ Spoon Size N/A-In Kalamazoo filver Superfund Site Hammer Webaht N/A-Ib 📤 Geologiat Bavid W Lay Height of Fall, N/A-in 300 Geotechnical Test Sample/Int/Type 5° 40 Geologic Column Ξ PID (ppm)
Headspace Straligraphic Boring ELEVATION Sample Run Number 되 **Hecovery** Description Construction Blows/8 z GROUND SURFACE Brown tine to medium SAND some 558003 233 coarse sand and silt. little line Cement/bentonite gravel, loose moist grout backill to ß 22 720 140 Grading with no grave! 3 3 В LI 3 ā HOW - 5 0.0 £ 2" layer line SAND and SILT ſ Light to dark grey CLAY little paper fibers, and time to medium sand 775 ioose wet HOH 07 WOH 2' layer of white CLAY WOH Light to dark grey CLAY little paper libers and fine to medium sand. WOH \$58004 L7 WOH loose wet MOH 1 Light grey PAPER FIBERS little clay 10 salt wat (Hydrogen Suitide ador) Ю \$58005 LB 2 710 11 Black stained line SAND trace slit 12 loase wet 10 12 25 0.5 13 15 End of boring at 140 BGS Έ, Saturated Zones Remarks. 3 Date / Time Elevation Cepth Boring illed with bantonite upon completion BLASIAND, BOUCK & LT ENGINEERS & SCIENTISTS Suript 35L-bore Cate 07/06/94 Project 845.14 Page 1 of 1 KB 515

LAGOON K Boring No. SPL-5 Northing Date Start/Final: 05/06/94 / 06/08/94 Eastha Drilling Company: Mateco Borehole Depth 10 ft. Ste Driver's Name: Bob Greyer Ground Surface Eleva 719.0 ft. Simpson Painwell Mill ... Orling Method: Hollow Stem Auger , ~·~ Est Sizec N/A-In. Auger Size 4.25-In Clent. RECTYPE: CHE-45A Allied Paper Inc./Portage Creek/ Spoon Size: N/A-In. Kalamazoo River Supertund Site Hammer Melaht: N/A-Ib Geologiat David W Lay 1 Helant of Falt N/A-in Septechnical Test Sample/Inf/Type Geologic Cotumn PIO (ppm) Headspace Strattgraphic Bortna ELEVATION Samole Run Number SIGHS/8 In Recovery Cescription Construction . 보 17 GROUND SURFACE Brown SILT and tine SAND little a medius to coarse sand and fine Cement/bentonge 11 gravel, wose damp (FILL) 15 8.0 grout backfill to 4 aoi Э Brown/black line to medium SAND and COAL SLAG loose malst wood E.O 3 tragments in nose of spoon 2 2 715 5 2 NA COAL SLAG 14 l.B Ø 14 Grey CLAY and PAPER FIBERS. Brown coarse SAND and tine GRAVEL little line to medium sand 8 סמ 組 8,0 and silt loose wat O Ю Brown rounded medium to coarse - 10 SAND and fine GRAVEL little fine sand trace sit loose moist End of boring at 100 BGS 706 Saturated Zones Remarks. Date / Time Elevation Depth No analtyical samples submitted from this bonng. Baring fled with bertanite upon BLASLAND, BOLCK & LEE completion ENGIN ERS & SCIENTISTS Script 89L-oore Data 07/05/94 KB 515

Page: Tot I

Project: 545.14

Date Start/Finish: 08/02/94 / 08/02/94 Orlling Company Maleco Driller's Name: Bob Dreyer Drilling Method: Hollow Stem Auger Bit Size: N/A-In. Auger Size 3.25-In. Alg Type: CME-46A Spoon Size. N/A-in-Hammer Weight N/A-Ib. Height of Fall N/A-In

Northing Easting: Borehole Depth: 18 ft. Ground Surface Elev. 720 0 ft. Boring No. SPL-1

Siter Simpson Painwell Mill

Cllent:

Allied Paper Inc./Portage Creek/ Kalamazoo River Superfund Site

Geologiat David W Lay Geotechnical Test Sample/Inf/Type Geologic Column Ξ PID (ppm) Headspace ELEVATION Sample Run Number Strattgraphic Blows/8 In Borina Recovery Description Construction Z GROUND SURFACE Brown fine to medium SAND some slit little rootlets loose mast Cement/bentonite \$58000 2 10 L grout backfill to 0 21 Grey CLAY little line to medium sand trace paper fibers loose 2 moist NR WOR WOR White CLAY trace paper fibers toose moist ROW 75 - 5 \$58001 B O HOW 2.1 WOR 1 Dark grey PAPER FIBERS Ittle clay loose maist 14 Black stained fine SAND loose 21 0 8 S58002 20 7 moist (FILL) 7 Grading wet 4 5 12 11 7 8 710 Ю 4 4 8 1.2 4 8 14 08 18 51 20 1.2 Saturated Zones Remarks Date / Time |Elevation Depth Boring Illied with bentonite woon completion BLASLAND BOUCK & LCC ENGINEERS & SCIENTISTS Project 34514 Page | 01 2

Script 931-bare Date 07/08/94

KB 515

- William Street Boring No. SPL-1 Clent Allied Paper Inc.,/Portage Creek/ Kalamazop River Superfund Site Total Depth = 18 ft. Ste *** } Simpson Palmet Mil 3 % Sample/Int/Type PELEYATION PID (ppm) Headspace Boring Alows/8 In Recovery Construction 51 20 L2 В Grey fine to medium GRAVEL some 00 coarse sand loose wet Black tine SAND loose, wet 8 ıa 20 LO Ø 12 End of boring at 18 0 BGS 700 695 830 -30 Saturated Zones Remarks. Elevation Depth ţζ Date / Time BLASIAND BOUCK & EE ENGINEERS & SCIENTISTS **KB 515** Script BBL-bore Date, 07/06/94 Project 845.14 Page: 2 31 2 LAGOON M

Date Start/Finish: 08/02/84 / 08/02/94
Driling Company: Mateco
Driller's Name: Bob Dreyer
Driling Method: Hollow Stem Auger
Bit Sze: N/A+In. Auger Size 3.25-In
Rig Type: CHE-45A
Spoon Size, N/A-In.
Hammer Weight: N/A-In
Height of Falt N/A-In

Northing: Easting: Borehole Depth: 20 (t Ground Surface Elev., 720.4 ft.)

Geologiat David W Lay

40

Sc pt 38L-bore Date 07/05/94

Proect 845.4

Boring No. SPL-7

Ste

Simpson Painwell Mill

KB 515

Page 1 of 2

Jent,

Alled Paper Inc./Portage Creek/ Ralamazoo Alver Superfund Site

				*		•					<u> 1 %</u>	<u>**</u>	
рерт⊬	ELEVATION	Sample Aly Number	Sample/Int/Type	Blows/8 In.	Ŋ	Recovery (III)	PID (ppm) Needspace	Geotechnical Test	Geologic Column	Stratigraphic Description	Co	Boring Instruction	
gs eleration 720.4 ft.										GROUND SURFACE			
_	720			3 4 5 7	g	1.3	L3		Ì	Brown line to medium SAND some coarse sand little slit and gravel trace grey clay loose wet	× × × × ×	Cement/ber grout backs 20.0°	ntanite illita ~
				3322	5	04	25			Grading to trace slit	>		-
5 	75 _			K K	ı	0.8	2.8		`		× × × × ×		
-	-				1	a.o	3.0			Light grey to black CLAY some	. ^ ^ ^ <u>^ </u>		,
-10				WOH WOH 2 4	2	เม	2.5			White grading to grey CLAY little paper libers, grading with line sand loose wet	^ V		- -
<u> </u>	700 -			3 4 8 8	a	0.9	L3			SAND loose wet. Brown/black medium to coarse SAND little angular gravel, clay and paper libers, loose wet (FILL)	^ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		-
_	1			13 14 8 8	æ	E.O	1.7				V V V V		<u>.</u>
15	4			4 5	12	0.5	1.3	1			Á		
	BLAS ENGIN	ELANO BOU	CK & L	TE STS				anah ng.	Borl	1 samples submitted from this org filled with bentonite upon	Satura e / Time	ted Zone Elevation	

Clent:
Alled Paper Inc. /Portage Creek/
Kalamazoo Alver Superfund Site
Site:
Simpson Painwell Mill

DEPTH	ELEYATION '	Sample ' Sample Run Number Run Nu	Sample/Jul/Type 🗧	Blows/d In	N 24 5 5 2 N	Recovery (パン 속	PID (ppm)	Geotechnical Test	Geologic Column	Stratigraphic Boring Construction
	705_			7	12	0.5	L3			\ \cdot\
-	-			4 5 7 8	12	O.J	24			\(\frac{\chi}{\chi}\)
_	-			4 4 8 7	۵	ıo	2.5			Grey time to medium SAND trace silt toose wet
2 0	700								<u> </u>	Grey tine SAND little medium sand and gravel loose wet End of boring at 200 BGS.
	1 1									
-	Τ									
_æ	895 _					,				
	11									
	_									
-30										
-										
-	-									_
35	_	ot .					. 2			Saturated Zones
		MEES 6 S		ee sis		ş	Rémar	Ks.	ŧ	Date / Time Elevation Depth
Prolec	t: 645.1	4		r pt 2 ite, 07	61t /35/	ore 94	1_			KB 515 Page 2 of 2

LAGOON N

Date Start/Finist: 06/03/94 / 06/03/94
Drilling Company: Mateco
Drilling Company: Mateco
Drilling Method: Hollow Stem Auger
Orling Method: Hollow Stem Auger
Ett Szer. N/A-In. Auger Stze 3,25-in
Rig Type: CHE-46A
Spoon Stze N/A-In.
Hammer Weight: N/A-In.
Height of Fait N/A-In.

P a ect. 645.14

Shrot 38L-bore Date 07/08/94 Northing: Easting: Borehole Depth: 12 ft. Ground Surface Elev., 72t5 ft. Boring No. 591.-8 Site:

Simpson Painwell Mill

\$ 61

Clent

Alled Paper Inc. /Portage Creek/
Kalamazop Alver Superfund Site

KB 515

Page: 1 of 1

Geologist: David W Lay

Geolechnical Test Sample/Int/Type Seelogic Column Recovery (ft.) PIÓ (ppm) Headspace Stratigraphic Boring ELEVATION Sanole ... Aug Number Blows/8 In Description Construction CEPTH z ps elevalun 1215 ft GROUND SURFACE arox CIAR author of ant aword slit. Iftle coarse sand and gravei Cement/bentonde 5 loose moist grout backtill to В u š 2.C 720 3 4 3 5 8.0 Brown fine to coarse SAND some fine gravel trace sit, loose wet HOH WOH - 5 LO t жон Grey CLAY some paper fibers little tine a coarse sand loose wet 775 HON WOH! O.E. HOW MOH Grading with some coarse sand HOH 07 2 - 10 8 19 L3 ā סת G ey CLAY trace paper fibers Black stained tine SAND little silt trace gravel loose wet End of boring at 12.0 BGS 15 Saturated Zones Remarks. Oate / Time Elevation Depth No analytical samples submitted from this boring Boring Bed will bentonite upon completion

Aeration Basin Date Start/Finish: 06/03/94 / 06/08/94 Northing Boring No. SPL-6 Easting Orling Company: Mateco Borehole Depth: 80 ft. Site 😘 Driter's Name: Bob Dreyer Ground Surface Elev. 7155 It. Simpson Painwell Mill Orling Method: Hollow Stem Auger Bit Size: N/A-In. Auger Size 3.25-in Rig Type: CHE-45A Clent > Alled Paper Inc /Portage Creek/ Spoon Size. N/A-In Kalamazoo River Superfund Site Hammer Welcht: N/A-E Geologist; David W Lay 1 Helpht of Falk N/A-In Geotechnical Test Sample/Int/Type Geologic Column PIO (ppm) * Headspace · Stratigraphic Bortha **ELEVATION** Cescription Recovery Construction BIOWS/B I gs eleralim 735 ft GROUND SURFACE Brown SILT and fine SAND little 258013 775 medium to coarse sand trace fine Cement/bentonite 10 26 grout back181 to gravel loose damp (FILL) 35 07 3.1 27 S58014 Brown fine to coarse SAND 7 rounded trace slit and gravel loose, 8 18 LO 12 moist 10 Rad/brown oxidation staining 5 5 04 22 Grading wet 710 End of boring at 8.0 BGS 705 Saturated Zones Remarks. Date / Time Elevation Depth Boring illed with bentonite upon completion BLASLAND, BOUCK GLEE ENGINEERS & SCIENTISTS Script, BBL-bore Date 07/08/44 KB 515 Project, 845.14 Page 1011

Table F 1

Summary of Existing PCB Data in Soil⁽¹⁾

Former Wastewater Sludge Dewatering Lagoon and Aeration Basin Area

I OCATION	SAMPLE ID	SAMPI F INTERVAL (feet bgs)	MFDIA	TOTAL PCB CONCENTRATION (nig/kg)
Lagoon A	SPL 13	0 0 0 50	Overburden soil	<0 051 L
Lagoon A	SPL 13	0510	Overburden soil	<0.051 U
Lagoon A	SPL 13	14 16	Residuals	0 11
Lagoon A	SPL 13	16 18	Underlying soil	0 091
Lagoon C	SPL 4	0005	Overburden soil	<0 051 L
Lagoon C	SPL 4	12 14	Residuals	1 5 J
Lagoon C	SPL 4	16 18	Underlying soil	0 048 J
Lagoon G	SPL 11	0 0-0 50	Overburden soil	0 038 1
Lagoon G	SPL 11	10 10 5	Residuals	16 J
Lagoon G	SPL 11	10 5 12	Underlying soil	0 051 J
Lagoon J	SPL 2	0 0-0 5	overburden soil	0 040 J
Lagoon J	SPL 2	8010	Residuals	0 2
Lagoon J	SPL 2	10 12	Underlying soil	0 025 J
Lagoon L	SPL I	0005	Overburden soil	<0 050 U
Lagoon L	SPL 1	4060	Residuals	0 27 J
Lagoon L	SPL 1	6080	Underlying soil	0 12 J
Acration basin	SPL 6	0 0 0 50	Soil	0 27
Acration basin	SPL 6	2 0-4 0	Soil	<0.052 ℃

Notes

bgs - below ground surface

J - the compound was positively identified. The associated numerical value is an estimated concentration only

U = the compound was analyzed for but not detected. The associated value is the compound is Quantitation I imit

Created by GLB 7/06 Checked by NIB 9 06

⁽¹⁾ Samples collected by Biasland Bouck & Lee Inc (BBL 1996a)

	e de la constante de la consta		m ~	3 622-			WELL CONST	RUCTION LO	G						=	
		₹3	M									V	ÆL			MW-9
F	acılı	ty/Proje	ect Nar	ne	<u> </u>	_		Date Drilling Started		Date E	Orilling	Compl	eted		Page 1 Projec	of 1 Number
					user Mill Gro	oundwater	Investigation	12/9/08				9/08			•	5133 06
┢	rillin	ıg Fırm				Drilling Meth	nod	Surface Elev (ft)	TOC	Elevatio	n (ft)	Total	Dep	h (f	t bgs)	Borehole Dia (ın)
L			lateco	Dnll	ing	Hol	low Stem Auger	-	<u> </u>				18			4 25
B	onn	g Loca	tion					Personnel Logged By SM/K6	GG			Drillin	g Eq	uipr	ment	
Ĺ								Driller Gary Swift						С	ME 5	55LC
C	IVI T	Fown/C	ity/or V	/illage	County		State	Water Level Observ While Drilling		/Time	12/9/	/08 00 C	ю	▽	Depth	(ft bgs) <u>125</u>
L			nwell		Alle	gan	MI	After Drilling	Date	/Time		- 		_		(ft bgs)
Ľ	SAM	IPLE												ı		
NUMBER	AND TYPE	RECOVERY (/)	BLOW COUNTS	DEPTH IN FEET			LITHOLOGIC DESCRIPTION				nscs	GRAPHIC LOG	WELL DIAGRAM		C	OMMENTS
F	Ì		2	 -	Topsoil	Topsoil wit	h organics			_	<u> </u>	1	ī	T		
1		42	9		1	·	_						1	1		
S		,	6				e sand some medium e no odor Strong Bro		ce			, log				
\vdash			3	2-	•	ole recover		(, , , , , , , , , , , , , , , , , , ,			0147	46.9		0	No reco	very
2 SS		0	3]		-				sw	a_{b}		8		
S	, [3 5													
\vdash	1		5	4-	Sand Mo	ostly coarse	e sand some silt few i	medium sand and	trace	, -		1 19				
3		54	6		gravel	Moist loos	e no odor Strong Bro depth and fine sand ir	own (7 5YR 4/4) ocrease Color ch	anne	of	SM			0.	D-#	
5	ď		8 14	,	- ∖the fine :	sands to D	ark Reddish Brown (5'	YR 3/4)		/_		3		0	Daller re	eports lots of cobbles
\vdash	1		14	6-	Sand Mo	ostly coarse	e sand some medium oose no odor Light E	sand few fine sa	nd					8	Stone r	sample t p
4		4	10		No samp	ole recover	y	orowii (7 o i i coro,	,	ľ		. 4 9				
ا	ď		12 18		<u> </u> 							P A				
			10	8-	-								7			
5		42	13]							200				
*	ľ		13 7		1								}	H		
			4	10-	1							> V 4	E			
6		50	4]					ľ		, ,				
3	ľ		4 10		-					i	sw					
	Ø		7	12-	- Same as	s above be	coming saturated at 12	2				, ,				
7 SS	Ø	17	3		Ţ <u>=</u>							7,4				
3	, Ø		35 41		1						i					
	8		3	14-	1					1		9 4				
8 SS		58	3]							0				
S	'Ø		3	,	-							0.0				
\vdash			4	16-	1							4 8				
9 SS		25	2]							, A				
	, [2		_							200		-1		
\vdash	<i>M</i>		├ <u></u> -	18-	End of b	oring at 18	below ground surface	<u> </u>								
]	-				1						
					-											
		_	l		I											
Si	gna	ture					Firm RMT			075	100	00.11		· ·	0100	M 4054=
≀l							2025	E BELTLINE AV	E SE	STE 4	102	GRAN	ID F	ΚAI	PIDS	MI 49546Fax

Checked By J Overvoorde

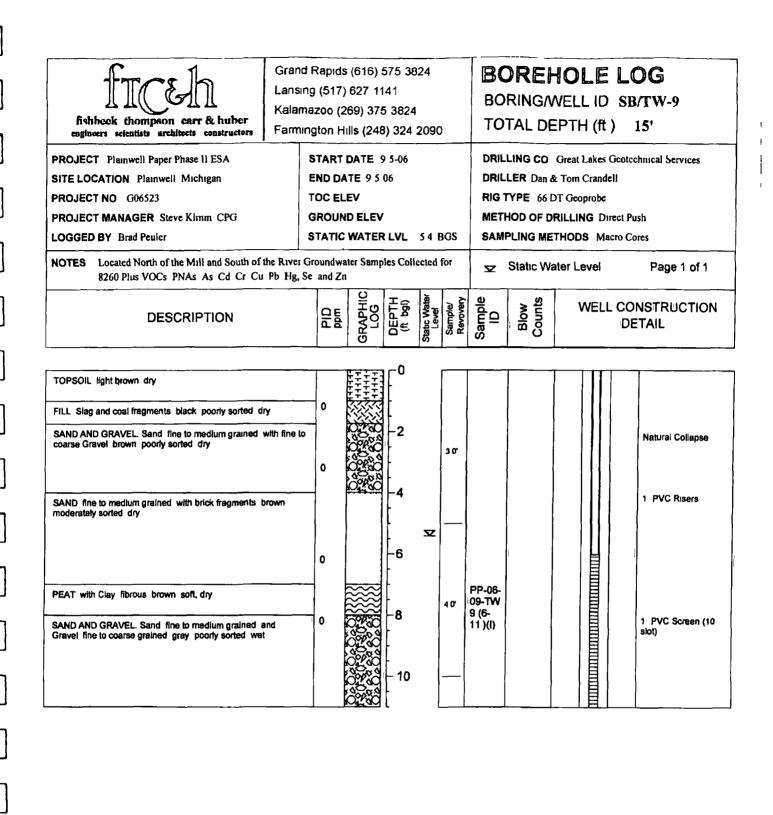
F	3	M		3						WE	ELLI	NO N	/iW 10		
Facilit	v/Proje	ct Nam	ie				Date Drilling Started	1 D	ate Drilling	Compl	eted	Page 1	t Number		
				ser Mill Gro	undwater	Investigation	12/10/08	_	0/08			5133 06			
Drillin	g Firm		Dii.		Drilling Meth		Surface Elev (ft)	vation (ft)	Total			Borehole Dia (in)			
Bonng	Locat		Drillir	ig	Hol	low Stem Auger	Personnel	<u>·</u>		Drilin	18 5 g Equi	5 4 25 uipment			
							Logged By SM/K0 Driller Gary Swift					СМЕ	55LC		
Civil T		ity/or V	llage	County		State	Water Level Observ While Drilling	ations Date/Ti	me <u>12/1</u>	10/08 00 00 ☑ Depth (ft bgs) 13					
SAM	Plair	well		Alle	gan	MI	After Drilling	Date/TI	me			Dept	h (ft bgs)		
NUMBER AND TYPE	RECOVERY (/)	BLOW COUNTS	DEPTH IN FEET			LITHOLOGIO DESCRIPTIO			SOSO	GRAPHIC LOG	WELL DIAGRAM	C	OMMENTS		
	_	4			Topsoil wit						1				
1 SS 2 SS 3 SS	75 50	4 4 4 4 5 5	2— 2— 4—	dry no d Lens of g Coarse s	odor Redo gray silty cl sand increa	ases with depth	,	_oose	sw	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					
4 SS	4	5 5 4 4 4	6-	_		um sand with some g		gravel	CL ML			Driller r drilling	eports cobbles while		
5	63	3 3	8-	Color cha	anges to B	sand trace silt No d									
		3 6	10-			and little gravel Loos YR 4/4)	se dry no odor								
6 SS	21	10 12 9 5	12-	Become: to Yellow	s moist wit vish Red (5	h little silt and trace g SYR 4/6)	ravels and color ch	anges	SP	V 4 4 A					
7 SS	54	5 5 5	14-			el some course sand ry Pale Brown (10Yf		 ed							
8 55	25	2 2 4 5	· -						sw						
9 SS	42	3 3 4	16-	Same as	above				344						
		6	18-	End of b	oring at 18	5 below ground sur	face								
Sien -	1185					I Fire Con	TING								
Signat	uie						T INC 25 E BELTLINE AV	E SE S	TF 402	GRAN	ID RA	APIDS	MI 49546Fax		

677	2000	- 	e leus	æ:		WE	LL CONST	RUCTION LC	G							
H		M		464								WE	ELL		MW-11	
Faci	ity/Proje	ect Nan	ne		_			Date Drilling Starte	ed	Date	Drilling	Compl	eted		1 of 1 ect Number	
1		Weye	rhaeu	iser Mill Gro	oundwater l	nvestigat	ion	12/10/08	1	ĺ	12/1	0/08			5133 0	6
Drilli	ng Firm				Drilling Meth		-	Surface Elev (ft)	TOC	Elevation	on (ft)	Total	Depth	(ft bgs	Borehole	Dıa (in)
<u> </u>		lateco	<u>Drilli</u>	ng	Holl	ow Stem	Auger						14 (4 2	25
Bour	ng Loca	tion						Personnel Logged By SM/I Driller Gary Swi				Drillin	g Equ	ipment CME	55LC	
Civil	Town/C	ity/or V	'illage	County		State		Water Level Obse While Drilling		e/Time	12/10	0/08 00	00 5	Z Der	oth (ft bgs)	85
		nwell		Alle	gan		MI	After Drilling	Date	e/Time		1			th (ft bgs)	
SAI	MPLE	ł														
NUMBER AND TYPE	RECOVERY (/)	BLOW COUNTS	DEPTH IN FEET				THOLOGIC ESCRIPTION				scs	GRAPHIC LOG	WELL DIAGRAM		COMMEN	ITS
	_	4		Topsoil	Topsoil with	n trace gr	avels	-					र्गा	 		
1 SS	63	5	_			sand so	ne coarse sa	nd little gravel	Gray _			$\overline{\phi}$	11	1		
		5 7 2 3	2-		ange to Str ly gravel s			6) with some silt y loose no odor		/						
SS S	100	3	-													
	1	5	4-				Dry low plast	licity no odor								
		3	_	Greenisr	n Gray (GL	EY2 6/1)					CL		4	1		
3 SS	33	3	-								ML		11	1		
	1	3	6-					e to Gray (7 5YR								
4 SS	50	2 3 5 7	-	odor loo	se moist	Light Bro	nedium sand own (7 5YR 6 e sand with n	trace gravel N /4) no odor	0			D 0 0 0				
5 SS	21	12 5 5 3	- 8		increase wi to Reddish			Saturated with	color		sw	4 A				
6 6 SS	33	2 3 3	10-	Color ch	ange to ligh	nt brown	(7 5YR 6/4)					P P P P P P P P P P P P P P P P P P P				
	1	6 12	12-	Sand Ma	oth coom		mo graval tr	ace silt Saturat				7.3	昌			
7 5 8 8	21	5 5	-	loose no	odor Bla	ck (7 5YI	R 2 5/1)	ace siit Saturati	eu		sw	, o , s , o				
	1—	5	14—	End of b	oring at 14	below g	round surface	9				4.8		1		
			_													
500			16-													
O WELL CONSTRUCTION			- 18													
<u> </u>							F 51.4=	ING								
Signa	e						Firm RMT 2025	INC E BELTLINE A	VE SE	STE	402 (GRAN	D R	APID:	6 MI 4954	46Fax

Par		A AN	ie ise	3		WELL	. CONST	RUCTION LO	G					
		M		_							Wi	ELL		MW-12
Facilit	u/Drose	ct Nam				_		Date Drilling Starte	<u>м</u> - 1	Date Drilling	Comp	otod		e 1 of 1 pect Number
· GOIII				oor Mill Cross-	duratar Ir-	vontantin		1	·		•		'"	•
)allie		vveye	ınaeu	ser Mill Ground	dwater in		I	12/9/08 Surface Elev (ft)	TOO	12. levation (ft)	/9/08	Dent) (# b-	5133 06
עוווחל	g Firm				-			Sunace Elev (II)	100 8	sievauon (π)	lotal			ps) Borehole Dia (in)
·		ateco	Unilii	ng [Hollo	w Stem Au	uger			_		14		4 25
soring	Locat	ion						Personnel Logged By SM/K	GG		Dullin	g Eqi	ıpmei	าเ
						_		Driller Gary Swif					СМ	E 55LC
Civil T	own/C	ity/or V	ıllage	County		State		Water Level Obser				~		
	Plair	nwell		Allegar	, [M	11	While Drilling After Drilling		/Time <u>12/9</u> /Time	<u> </u>	<u> </u>		epth (ft bgs) <u>75</u> epth (ft bgs)
SAM											1		T	\3-/
AND TYPE	RECOVERY (/)	BLOW COUNTS	DEPTH IN FEET				HOLOGIC CRIPTION			NSCS	GRAPHIC LOG	WELL DIAGRAM		COMMENTS
	Œ	3	Δ	Fill Mostly o	lav some	a cilt littla i	madium sa	nd trace roots			- W	>	-}	
		3	-					nd trace roots odor Brown (7 5	5YR	/—	*	1	1	
s	83	4	-	\5/3)			<u>-</u>	•		_/	***************************************			
s		4	-	Fill Mostly n	nedium sa	and some	coarse sa	nd little fine san	d		MA			
Ø	_	2	2-	Moist loose						_/				
s	17	2	_	·		•	•	•	-					
30		2	_	Small amou	nt of pap	er residual	is with trac	e gravels and wo	oody		1	14	∕/ cob	ller reports lots of bles Poor sample
Ø		2	4-	material C	oior chan	ige to Blac	ik (TOYR 2/	1)						overy
		3	_											
s	4	3	_	Mostly clay	some eilf	few nane	er residuale						}	
		8	-	widdiy day	JUNIO SIII	· ion pape	, rooiduala	•				l ⊟		
B		4	6-	Sand Mostly	/ medium	sand trac	ce fine san	d Moist loose i	no	<u> </u>	 	目		
	75	4	_	odor Brow	n (7 5YR	5/2)					[]			
s	75	5	_	ablaColor grade	s to Brow	vnish Yello	w (10YR 6	/8)		SP	;	目		
И		8	8-	Saturated						١٩٩	;			
		2		T								目		
	38	2	_	Trace coars		sand trac	00.000000	and fine cond			ļ.,,.,	目		
		2	-	Sand Mostly Saturated 1				and fine sand R 2/1)			[:			
H		2	10-		ong	, Juli L	(101				•	目		
		2	-								:	目		
	54	3	+								;			
		4	-							SP	į ;	目		
Ø		1	12-									目		
s	0	1									† ;	<u>,</u>	1	
s	•	1									;			
14		1	14-			hala					ļ			
			-	End of borir	ig at 14 t	below grou	una surtace)						
			-											
			-											
			16-								1			
			-											
1			_											
			18-											
			10-											
			_											
			-											
		لـــــــا		L	_						Ц			- ·
						Te.	Irm DAT	INC						
Signat	ure					[]	m RMT 2025		/E SF	STF 402	GRAI	ND F	API	OS MI 49546Fax
					_					J 1.L 702	<u> </u>	· · · ·	2 (1 IL	IVII TOUTU AX

		nVn		3		WELL CONS	TRUCTION LO	J		V	VELI	L NO	MW-8
<u> </u>	CASE IN	a W 12	سه د				_		_	•		Page	1 of 1
Facili	ty/Proje	ect Nar	ne				Date Drilling Started	d	Date Drilling	Comp	leted	Proje	ct Number
			rhaeu	iser Mill Gro		Investigation	12/10/08			10/08		Ш	5133 06
Drillin	g Firm				Drilling Met		Surface Elev (ft)	TOC E	evation (ft)	Total			Borehole Dia (i
			Drillii	ng	Hol	low Stem Auger	<u> </u>			D-0-	12 5		4 25
Borin	g Loca	uon					Personnel Logged By SM/Ki Driller Gary Swift			Unilli	ig Equ	ipment CME	55LC
Civil 1		ity/or \	/illage	County	gap	State	Water Level Observ White Drilling After Drilling	vations Date/I		0/08 00	00 7		th (ft bgs) 7.5
SAM	PLE	IWEII	1	Alle	gan	IVII	After Drilling	Date/	Ime	Т		Deb	th (ft bgs)
		1											
NUMBER AND TYPE	RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET			LITHOLOGIC DESCRIPTION			nscs	GRAPHIC LOG	WELL DIAGRAM	(COMMENTS
È		4	<u> </u>	Topsoil	Mostly me	dium sand some coai	rse sand and orga	nic	-	1	T	 	
1 SS	79	4 4 4	-	Sand Mo	stly mediu	wn (7 5YR 3/3) Im sand some fine sa r Yellowish Red (5YI	nd trace silt and g R 4/6)	gravel	SW	9			
		5	2-	Sand Mo	ostly coars	e sand little gravel D	ry loose no odor		} _	1 8			ecovery due to rock
2 SS	21	3 3	-	Brown (10ÝR 5/3)	·				9 9		tıp	
		3	4-						SP	9 8		1	
3		5	-	ļ						000		1	
ss	50	4		_						20	目		
		6 10	6-			e with few black cinde e sand some fine san				3	目		
4 SS	54	10 10 10	-	loose no	odor Ve	ry Pale Brown (10YR	8/4)			2 2			
		10	8-	Gravels	ıncrease a	nd becomes saturated	t			a	目		
		10								0 7 1		Poors	ample reco ery
5 SS	4	10	-						SP	30	目		
		12	-						"	3 3 3	目		
		4	10-	Rock in:	spoon tip					[*a]	텕	Poor s	ample recovery
6 SS	17	6	-							P P P	目		
		6 9	-							6	目	1	
K2		Ļ	12-							90		-	
				End of b	oring at 12	2 5 below ground surf	ace				<u> </u>	1	
			-							1			
			14-							[
			~										
		ĺ											
			16-										
			-										
			-								,		
			18-										
	l			1							1	1	
			-										
			_										
Signa	ture						Γ INC 5 E BELTLINE AV	/E QE 9	STE AND	GRAF	ND D	ΔDIDO	S MINDEAGE.
							L DLL I LINE AV	יב טב כ	JI L 402	OL/VI	40 K	ארוט	VIVI 49040F8

APPENDIX B


STRATIGRAPHIC INFORMATION AREA 2 – MILL BUILDINGS AREA

		•
		-
		ı
		- ' I
		1

fishbeck thomoson carr & huber	nd Rapid sing (517 amazoo (mington l	') 627 11 269) 37(141 5 3824	ļ.)	ВО	RINGA	HOLE I WELL ID (EPTH (ft)	
PROJECT Planwell Paper Phase II ESA SITE LOCATION Planwell Michigan PROJECT NO G06523 PROJECT MANAGER Steve Kimm, CPG LOGGED BY Brad Peuler NOTES Located In The Former Fill Area Soil and Grouf for PNAs Phenols As Cd, Cr Cu Pb Hg Se	END D TOC E GROU STATIC	ND ELEV	06 R LVL.	7 45	BGS	DRIL RIG 1 META SAMI	LER Dan & TYPE 66 I HOD OF D PLING ME	Great Lakes Ge Tom Crandell OT Geoprobe RILLING Direc THODS Macro	
DESCRIPTION	Old	GRAPHIC LOG	DEPTH (ft bgl)	Static Water Level	Sample/ Revovery	Sample ID	Blow Counts		CONSTRUCTION DETAIL
FILL Sand fine to medium grained with trace coarse Gravel and Coal/Ash/Siag fragments black, poorly sorted dry Poor Recovery	0		-2		10	PP 06- 09-SB 7 (0- 0 5') (I)&(D)			Natural Collapse 1 PVC Risers
SAND fine to medium grained with fine Gravel Cobble fragments brown poorly sorted dry PEAT Clayey fibrous brownish gray moist SAND AND GRAVEL Sand medium to coarse grained with fi	0 10 0	50505050501111 525555511111	-8 -10	•	30	PP 06- 09-SB- 7 (7 7 5') (I) PP-06 09-TW 7 (8- 13') (I)&(D)			1 PVC Screen (10 slot)
SAND medium to coarse grained brown well sorted wet	o		12		30				

ı

fishbeck thompson carr & huber engineers scientists architects constructors	Grand Lansing Kalama Farmin	g (517) azoo (2	(69) 37	41 5 3824)	во	PREI RINGA TAL DE	VELL	ID S	OG B/TW 8 15'
PROJECT Plainwell Paper Phase II ESA SITE LOCATION Plainwell Michigan PROJECT NO G06 23 PROJECT MANAGER Steve Kimm CPG LOGGED BY Brad Peuler NOTES Located North of the Mill and South of	the River G	END DA FOC EL GROUN STATIC roundwa	WATER	06 R LVL			DRIL RIG	LING CO LER Dan of TYPE 66 I HOD OF D PLING ME	& Tom Cr OT Geopre RILLING THODS	andell obe Direct I Macro (
8260 Plus VOCs PNAs As Cd Cr Cu DESCRIPTION	Pb Hg Se		GRAPHIC LOG	DEPTH (ft bgi)	Static Water Level	Sample/ Revovery	Sample ID	Blow Counts	WI		ONSTRUCTION DETAIL
TOPSOIL organic nch black dry SAND fine grained with trace medium Sand trace Si moderately sorted dry FILL Sand with brick fragments and Cobble fragements Recovery		0		-2		30					Natural Collapse 1 PVC Risers
SAND fine grained, with Silt, brownish gray soft, mot SAND fine to medium grained with trace coarse San Gravel brown moderately sorted wet		0		-6 -8 -10	•	25	PP-06- 09-TW 8 (6- 11) (I)				1 PVC Screen (10 siot)

			-		-		WELL	. CONST	RUCTION LO	G								
		3	1\1		73								V	ÆL		VO I	MW 1	
F	acılı	у/Ргој	ect Nar	ne					Date Drilling Starte	d	Date	Drilling	Compl	eled			Number	
				rhaeu	iser Mill Gro		Investigation		12/8/08				8/08		ot		5133 0	
	ııllın	g∤Fım				DnllingiMeth		1	Surface Elev (ft)	TOC	Elevation	on (ft)	Total			bgs)	Borehole	
Ļ			lateco) Drilli	ng	Hol	low Stem Au	ıger	Barriagi	<u> </u>			10	17			4 2	25
		giLoca							Personnel Logged By SM/K Driller Gary Swif				Drillin	g Eq	-	ME 5	5LC	_
C	ivil 1	own/0	City/or V	/illage	County ⁻	_	State		Water Level Obser While Drilling		e/Time	12/8	/08 00 0	00	Ω	Depth	(ft bgs)	11 5
L			nwell		Alle	gan	M	<u></u>	After Drilling	Date	/Time					Depth	(ft bgs)	
-	SAM	PLE	-										ı					
NIMBER	AND TYPE	RECOVERY (/)	BLOW COUNTS	DEPTH IN FEET				IOLOGIC CRIPTION				nscs	GRAPHIC LOG	WELL DIAGRAM		CC	OMMEN	TS
					Asphalt					///>	1	1						
					Sand Mo	Road Grave ostly coarse ose no od		sand little gravel YR 4/6)		_/	SW	4	1					
				2-	Low reco	overy sam	e as above v	with trace a	amount of wood						L	ow sam	ple recover	y
		1		4 -								sw	A 4 4 4		L	ow sam	ple recover	y
		1		6-									P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
1 53 1/2/09		25	4 3 4 7	8-	loose no	odor Bro	own (7 5YR	4/2)	sand little gravel			sw						
		83	6 10 11 13	10 -			e sand and g odor Pale B		e medium sand a R 6/3)	ind			2 2 5 2 0					
3 SS		42	11 11 11 11	12-	Trace s⊪	t becomes	present and	grades to	saturated in bott	om 6	I)	SP	2 A					
5 S50 5 SS		88	5 5 5 5	14-	Gravel M	lostly grave	el little coars	e sand Sa	aturated loose r	10		I						
5 SS		50	5 7 7 6	16								GP	700					
SOIL BOX IN SOIL B			-	18—	End of be	oring at 17	below grou	ndisurface				-						
ايٍ	Ц														.L_			
S	gnat	ure					Fir	m RMTI	NC									
<u></u>									E BELTLINE AV	E SE	STE 4	102 (GRAN	DR	API	IDS I	MI 4954	6Fax

FULL	~~ F		d			SOIL BO	ORING LOG						<u>-</u>
[F	31	īΥι		~J					E	3OR	ING i	NO MV	
Facility		ct Nar					Date Drilling Started	1	Date Drilling	Com	oleted		Number ⁻
			rhaeu	iser Mill Gro		r Investigation	12/8/08			8/08		1	5133 06
Drilling	Firm		.		Drilling Me		Surface Elev (ft)	TOC	Elevation (ft)	Tota		(ft bgs)	Borehole Dia
Sorma	Local		Drilli	ng	HO	ollow Stem Auger	Personnel			Dalls	6 0 ng Equi	nment	4 25
g							Logged By SM/K0	3G					
Civil Ta	own/C	ity/or V	/illage	County		State	Driller Gary Swift Water Level Observ	ahons		J		CME 5	bLC
		well				MI	While Drilling	Date	/Time			Depth (
SAM		iweii	Γ	Alle	gan	IVII	After Drilling	Date	/Time		Т	Depth ((ft bgs)
AND TYPE	RECOVERY (/)	BLOW COUNTS	DEPTH IN FEET			LITHOLOG DESCRIPT				nscs	GRAPHIC LOG	co	MMENTS
		2	_	Asphalt			· · · · · · · · · · · · · · · · · · ·				(%)		
	79	2 4 4	-	Sand Mo	load Grav	el se sand some medium trong Brown (7 5YR 4,	sand little gravel	Moi	st	sw	9		
Ø		4	2-			ne sand as above with	•	ood .			***		
	8	5	_								6 9		
		5 3	4							sw			
Ħ		4	4-							sw	4		
	8	4]							ı	, 00		
	۱	4		•							0		
		16	6-	End of be	onng at 6 et 3 NE	below ground surface	Hit something ha	ard F	Pull out				
			8-										
			4										
			4										
1		i	10										
			·]										
1	}	}	4										
			12-										
]						ì		ÌÌ		
	ŀ												
			14-										
		İ	4						}				
	l												
			16										
			18-										
			1										
Signatu	ire						TINC					PIDS A	

	₹}[M		3		WELL CONST	RUCTION LO	G			V	ÆLI	L NO	MW 2	
													Page	l of 1	
Facilit		ect Nan					Date Drilling Starte	d	Date		Compl	eted	Projec	t Number	
Drillin	g Firm	<u> </u>	maeı	iser Mill Gr	Oundwater Drilling Met	Investigation	12/8/08 Surface Elev (ft)	TTOCI	Elevation		8/08 Total	Depth	∖ n(ft bgs)	5133 0 Borehole	
	_	lateco	Drilli	ng:	1	low Stem Auger	_			. (.,		18 (4 2	
Boring	Loca			<u> </u>			Personnel Logged/By SM/K Driller Gary Swift				Drillin		iipment CME		
Civil T	own/C	ity/or V	'illage	County		State	Water Level Observ				<u> </u>	-	CIVIL		
		well		Alle	egan	MI	While Drilling After Drilling		/Time /Time	_12/8	/08 <u>00 0</u>	0 7		h (ft bgs) h (ft bgs)	13.5
SAM	PLE														
NUMBER AND TYPE	RECOVERY (/)	BLOW COUNTS	DEPTH IN FEET			LITHOLOGIC DESCRIPTION				nscs	GRAPHIC LOG	WELL DIAGRAM	С	OMMEN	ITS
1 SS		6 7 9	-	trace gr	avel Loos	sand some fine sand e moist no odor Blad and some medium sa	ck (10YR 2/1)								
2 SS	75	9 3 5 5 5	2— - - 4—	fine san Fill Mos coal frag 2/10) Sand Mo	d and silt tly coarse s gments and ostly coarse	Dry loose no odor E and some medium sa gravel Moist loose sand some medium	frown (10YR 5/3) and trace fine san no odor Black (1 sand trace fine s	nd IOYR							
3 SS	50	4 4 4	6	and grav	vel' Moist	loose no odor Browi	1 (7 5YR 4/4)				4 6 6 A				
4 SS	50	4 4 4 2	8-	Color gr	ades to⊧Bro	ownish Yellow (10YR 6	6/6)			SW	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				
5 SS	50	4 5 5	10	Gravel d Color ch	lecreases v ange to Ye	llowish Brown (10YR	5/6)	4		_	404.04B				
6 SS	54	6 8 7	12-	Moist lo	nostry grave cose no od ampler is sa	el some coarse sand or Pale Brown (10YF	iltte inedium sand 8 6/3)								
7 SS	58	12 13 11	- - 14 —	<u>∑</u>						GW					
8 SS	42	4 6 3	16 -	Same as	s above wit	h trace silt				,					
9 SS	50	8 8 8	-			ownish Yellow (10YR (200				
			18 -	End of b	oring⊦at 18	below ground surface	Э						:		
Signati	ure	<u></u>				Firm RMT	INC E BELTLINE AV	E SE :	STE 4	102 (GRAN	D R	APIDS	MI 4954	16Fay

<u></u>	==> r	سا لا	153			WELL CONST	RUCTION LO	G						
Ĺ	7 5E	M		-							N	ÆLI	NO Page 1	MW-3
Facili	ty/Proje	ect Nan	ne				Date Drilling Starte	bd	Date Dri	lling C	Compl	eted		t Number
Dadle	ng Firm	Weye	rhaeu	iser Mill Gro	Drilling Met	Investigation	12/11/08 Surface Elev (ft)		1 levation	2/11		D#	(A b-a)	5133 06
Driilir	•	lateco	Drilli	na	1	low Stem Auger	Sunace Elev (II)	TOCE		(11)	rotai	ინტი 10 5		Borehole Dia (4 25
Bonn	g Loca				1.10.		Personnel	/OC		-	Drillin		pment	
							Logged By SM/K Driller Gary Swif						CME	55LC
Civil 1	Fown/C	ity/or V	illage	County		State	Water Level Obser While Drilling	vations Date/	Time _1	2/11/0	08 00	<u>00 Z</u>	Z Depti	h (ftibgs) _4_
		well		Alle	gan	MIMI	After Drilling	Date/	Time				Depth	n (ft bgs)
NUMBER AND TYPE	RECOVERY (/)	BLOW COUNTS	DEPTH IN FEET	V		LITHOLOGIC DESCRIPTION				OSCS	GRAPHIC LOG	WELL DIAGRAM	C	OMMENTS
1 5	21	3 3 3 1	2-	Fill Poor in spoon Saturate	tip	vith large gravels som	e coarse sand ar	nd rock						covery due to loose
25	17	1 1 1	4-	∑ No recov	very due to	loose soil of recent tes	st prt			XXXX			SON OF TR	ecent test pit
39	0	1 1 1 16	6			sand and gravel som		ine	Si					
S	67	9 7 7	8-	Changes brown (1	to mostly 0YR 5/2)	ose saturated Black (course sand with little t	fine sand Grayi	ish	- S	M .	p∓ :			
	25	6 9 15	-	Sand Mo gravel V	stly mediui Vet no ode	ack sand as above wit m sand some Gray cla or Poor recovery sand with little silty cla	y and silt and littl	le	s		7 24			
		18	10-	End of bo	oring at 10	5 below ground surfa	ce			-		Ħ.		
			12-											
			14-											
			16-											
			18-											
]												

F	—————————————————————————————————————	7 /5][[,	3		WE	LL CONST	RUCTION LO	G					
	TI.	M										W	ÆLL	_ NO MW-4 Page 1 of 1
Facilit	_	ct Nan						Date Drilling Started	ď	Date E	_	Compl	eted	Project Number
Dallin	ıg Fırm		rhaeu	user Mill Gro	Drilling Meth		tion	12/11/08 Surface Elev (ft)	TOC	Elevatio		1/08	Donth.	5133 06 (ft bgs) Borehole Dia (in)
Dillini	-	lateco	بالعط	na	-	low Stem	Διισοτ	Sunace Elev (it)	100		''' (IL)	Total	10 5	
Воппо	g Locat			i ig	11011	OW Otom	nugei	Personnel	l			Drillin		ipment
						1		Logged By SM/K0 Driller Gary Swift						CME 55LC
Civil T		ity/or V nwell	illage	County	gan	State	MI	Water Level Observ While Drilling After Drilling	Date	/Time /Time	12/1	<u>1/08 00</u>	<u>00</u> Z	Z Depth (ft bgs) <u>5</u> Depth (ft bgs)
SAM				7 1.10	9	<u> </u>		7,000 570000		1				Bopur (it bgs)
NUMBER AND TYPE	RECOVERY (/)	BLOW COUNTS	DEPTH IN FEET				ITHOLOGIC ESCRIPTION				nscs	GRAPHIC LOG	WELL DIAGRAM	COMMENTS
1 SS		13 ° 7 ° 7 ° 7 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2 ° 2	2- 	Brown (1 White fir fragment Same as gravel ar	10YR 2/2) ne grained to ts s above with and brick frag	fill with bi h with Da gments	ack sand little	and little silt Dar e black silt and brown (10YR 4/2) s	ıck	1				Poor sample recovery
3 SS 4 SS	54 0	2 2 3 1 1 2 2	6- - -	⊤ fragment Wet at 5	ts little coa	I fragmei	nts Dark Gra	yish Brown (10Y	'R 4/2					No sample recovery in split spoon
5 SS	25	1 1 2 6	8 - - 10	Sand Mo Wet loos	estly coarse se Yellow	sand so Brown (*	ome fine sand 10YR 5/8)	and gravel little s	silt		SM			Poor recovery due to rock in tip
			-	End of b	oring at 10	5 below	ground surfa	ce				13-13-1	• • •	
			12-											
Signate			14-											
			16-											
			- 18- - -											
Signate	ure						Firm RMT 2025		E SE	 STE 4	02 (GRAN	D RA	APIDS MI 49546Fax

	, <u>b</u>	3[M.	15.			WELL CONS	TRUCTION LO	G		1	MEI	. NO	MW-5
'	ا اس		106	ليا ل							V	V⊏ L	Page	
Fac	ality/i	Proje	ct Nar	ne	_			Date Dnlling Starte	d Dat	e Drilling	Comp	leted	Projec	ct Number
			<i>N</i> eye	rhaei	user Mill Gro		Investigation	12/11/08			11/08			5133 06
Dnl	ling f					Drilling Met		Surface Elev (ft)	TOC Eleva	ition (ft)	Total			Borehole Dia (in)
Por	ing L		ateco	Orilli Orilli	ng	Hol	low Stem Auger	Personnel			Della	12	j Dipment	4 25
								Logged By SM/K Driller Gary Swift			Onna	ig Eq	CME	55LC
Civi			ity/or V iwell	'illage	County	egan	State MI	Water Level Observ While Drilling After Drilling	ations Date/Tim Date/Tim		1/08 00	000		h (ft bgs) <u>7</u> h (ft bgs)
SA	MPL	Æ			_									
NUMBER AND TYPE		RECOVERY (/)	BLOW COUNTS	DEPTH IN FEET			LITHOLOGIC DESCRIPTION	ı		nscs	GRAPHIC LOG	WELL DIAGRAM	С	OMMENTS
1 SS		75	6 6 6	-	gravel	lly medium 7 5YR 4/6)	sand some fine sand	little coarse sand	and		***			
		_	6 4 4	2-	Fill Fine sand wit	black sand h silt	some coal fragment	s with lenses of w	nite					
SS	<u>'</u>	54	2	4-	sand and	d gravel L	d concrete fragments .oose no odor						Boor m	co ery due to rock in
3 SS		17	2 2 2 3	- -	than abo	spoon up v	vith crushed brick with	more coal tragme	าแร				spoon ti	
4 SS		17	3 1 1 3	6-	Sand So $_{\underline{\nabla}}$ Wet sof	ome black : t no odor	sand with gray silt and Black (10YR 2/1)	little brown sand		SM	A 2 5 0		Poor sa	mple recovery
	4	42	4 4	8		ostly coarse 2 5Y 8/6)	sand some gravel life	ttle fine sand and s	silt.	011				
) -	-	5	10 —	I CIIOW (2	231 0/0)				SM				
6 SS	3	38	3 18 11	12-		fostly grave 2 5YR 5/6)	el little coarse sand ar	id silt Light Olive						
				_	End of b	олng at 12	5 below ground surfa	асе				•	1	
				14-										
	į			16										
6 SS				18										
L			ľ											
Sign	ature						Firm RMT	INC						

Firm

RMT INC 2025 E BELTLINE AVE SE STE 402 GRAND RAPIDS MI 49546Fax

Checked By J Overvoorde

Signature

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00-05133 04
SOIL BORING ID	TP 1			
NORTHING / LATITUDE	<u> </u>	347202 027	DATE / TIME STARTED	11/10/2008 15 00
EASTING/LONGITUDE		12778806 05	DATE / TIME FINISHED	11/10/2008 15 30
SURFACE ELEVATION				
DRILLED BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC.	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Sand and gravelifill dark brown	
					0.5]
	1	1 1	l		1]
		lΙ	l I	ı	15	12 layer of small cobbles (1 3 in size) and light brown sand	-
	Ì		'		2		
		H			25		1
		ll		0	3	PID @ 3 = 0 Sand and gravel with small pieces of glass	1
		1 1			35	dark brown moist all fill materials (no odor or staining)	•
					4		-
		l			45		-
		1 I		i	5		
		ł I		0	5.5	PID @ 5 5 = 0	1
Ì					6	Water @ 6 @ 5 7 A 2 3 layer of gravel and sand saturated	·\
			4		65	No sheen on surface	,
			1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	110 0110011 011 001100	
					·		.
		IJſ					
		ll					
		ll					}
		ŀ	1				
			ľ		│ — <u></u>		!
		}			—		
ı	i	łł	- 1	1			
I							
			l				
				ľ			
- 1			ŀ				
I							
i							ì
							l .

DRILLING METHOD	1	DRILL RIG	0.1	BORING DIAMETER
The Talela	1/15/09		det	2/2/09
SIGNED	DATE		OHECKED	DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP	2		
NORTHING / LATITUDE		347211 912	DATE / TIME STARTED	11/10/2008 16 00
EASTING/ LONGITUDE		12778821 13	DATE / TIME FINISHED	11/10/2008 16 10
SURFACE ELEVATION				
DRILLED BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC.	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Sand and gravel fill with some cobbles fairly consistent	
[1	0.5	also some construction debris	
		1 1		ľ	1		
1		H			15		_ _
1		1 1			2		
		1 1			2 5		
		1 1		0	3	Slight odor in one small area ~4 x5 PID @ 3 = 0	
]		1			3 5]
]		1 1	,		4	Thin layer of sand within fill material	
					4.5		_
					5	Additional sand gravel fill and organic pockets with twigs	
1 1	' 	1			5 5]
1 1	ı			0	6	PID @ 6 = 0	_
					65		
			!		7	Water @ 7	
1		1	1		7 5		_1 1
			ľ				_
i í							_
)		1]]
1							<u> </u>
			Į				I
]
			ļ] i
	- 1		ļ	- 1			7
l J			1				⁻]
l i]
		- }	ŀ	}			-
					<u> </u>		-
	1	1	1	ł			-

DRILLING METHOD		DRILL RIG	$\sim \Lambda Y/$	RING DIAMETER
the alch	1/15/09		(M)	2/2/09
SIGNED	DATE		CHECKED	OATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 3			· · · · · · · · · · · · · · · · · · ·
NORTHING / LATITUDE		347198 955	DATE / TIME STARTED	11/10/2008 16 20
EASTING/ LONGITUDE		12778836 49	DATE / TIME FINISHED	11/10/2008 16 40
SURFACE ELEVATION				
DRILLED BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental	·		

NO	TYPE	REC.	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Sand and gravel dark brown with some concrete (less)	
					0.5		
					1		
	ł		i		15		_
		1]			2		~
		J			25	Pockets of sand-fill and ash primarily sand-and gravel to	_
					3	6.5 Dark brown and moist	_
					35		-
				1	4		-
		J			45		-
		ľ			5		-[
		Ì			5 5		-
					6		-
		ļ		0	65	PID @ 6 5 = 0 Water @ 6 5 (sand and gravel)	-
				Ĭ	7	The grown or visites grown and graves,	-
			ı		75		-
							-
		H					-
]		1	1			No odors and no visible staining	-
		1	į.			140 ddois and no visible staining	-
i		1	ì				-
					— -		-
					·		-
		lł					_
							-
			l				_
			ı		' <u> </u>		-
ľ				ľ			_
			· i			· · · · · · · · · · · · · · · · · · ·	_
							_
			1	I			

DRILLING METHOD		DRILL RIG	BORING DIAMETER
			1
Ah. alh	1/15/09		1/2/39
SIGNED	DATE	CHECKTO	DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUME	BER	00 05133 04
SOIL BORING ID	TP 4	<u> </u>		·	
NORTHING/LATITUDE		347229 677	DATE / TIME ST	ARTED	11/11/2008 9 00
EASTING/ LONGITUDE		12778806 15	DATE / TIME FIN	IISHED	11/11/2008 9 50
SURFACE ELEVATION					
DRILLED BY			LOGGED BY	Natha	n Weber
ORILLING COMPANY	Kesster Environmental				

NO	TYPE	REC	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Silty sand and gravel fill	
		ľ			0.5		
1		1)		1	Light gray to black sand and gravel fill	
1 1					15	no odor and no visible staining	
				(2		
				0	25	PID @ 25 = 0	
					3	Large rubble rocks and concrete 12 14	
i i					35		
]]					4	Large rock with light brown fill changing to gray at interface	
!		1			45	with water level	_
]]				0	5	PID @ 5 = 0 Changing to wet saturated silt and fine black	
		l I			5.5	sand (same as TP 5) with organic material (wood and twigs)	
li					6	and shells	_[
					65		_]]
		1	- 1		7		_}
					7 5		
			Į				
				ı			_]
1	I		ŀ				.
}	1	1	1				<u> </u>
			j				.]
		l					.] [
			ľ				
ì		1		1			.]
							J ľ
			ļ	!			.
							.
	ļ						.
							<u> </u>

DRILLING METHOD		DRILL RIG	M	BORING D	DIAMETER
Ath When	1/15/09		11#	7	2/2/09
SIGNED	DATE	_	CHECKED		DATE

PROJECT LOCATION	PlainwelliMill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 5			
NORTHING / LATITUDE		347247 743	DATE / TIME STARTED	11/11/2008 8 00
EASTING/ILONGITUDE		12778803 19	DATE / TIME FINISHED	11/11/2008 8 30
SURFACE ELEVATION		-		
DRILLED BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC.	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Clay sandy fill light brown with some gravel	
		li		ŀ	05		
	ł			l	1		
	ĺ				15		
		1] 2	Fine sand black fill material with some gravel	
				0	25	PID @ 2 5 = 0	
	i	1			3		
				· '	35		
					4	Large nprap and rocks 8 10 (no odor and no visible staining)	
					45	<u> </u>	
		1 1		0	5	PID @ 5 = 0 water @ 5	
			ļ		5 5		
		1 I			6	PID @ 6 = 0 Fine black sand containing organics	
					65	and sticks (appears native)	
					7		
				l	7.5		, i
		ll		ı			
ı		ll	1				'
- 1							
i			ł		<u> </u>		
		ll		'			
ı,							
		ł	ł				
ĺ							
			ł				
ĺ			ľ				Í
ļ							
1				}			

DRILLING METHOD		DRILL RIG	BORING DIAMETER
Rh Zloh	1/15/09		2/2/09
SIGNED	DATE		HECKED DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 6			
NORTHING / LATITUDE		347256 414	DATE / TIME STARTED	11/11/2008 10 30
EASTING/ LONGITUDE		12778791 42	DATE / TIME FINISHED	11/11/2008 10 40
SURFACE ELEVATION				
DRILLED:BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC	BLOWS	PIO	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Sand and gravel fill brown with some concrete material	
	1]	0.5		
1		1	1 .		1		
	1			'	15		ļ
i	Í)		2	Light brown sand and gravel mixed with black sand and gravel	
1	1	1			25		
İ				0	3	PID @ 3 = 0	
					35		Į
	1				4	Changing to ash / cinder material light gray in color	
1	Į.				4 5	Also large concrete pieces 2 3 in diameter	
i					5		
		l			55		
1				0	6	PID @ 6 = 0 Saturated sand and gravet light gray clay with	
					65	silt and sand changing to black clay with organics and shells	
ł		ll			7	at bottom	
	í i	l				Changing to sand and gravel	
1		l	[1	8—		
ļ			ļ		-		
}			i		—		
1	l i	1	5				i
			ł				
ŀ	j		ľ	ŀ			
Ì	Ì		ì		-]
				ï	-		
ļ			ļ	ļ			ļ
			!	ł			
				ľ			
	1 1	1	ľ	l			
			!				

DRILLING METHOD		DRILL RIG	BORIN	G DIAMETER
Ah. Ell	1/15/07		MH	2/1/09
SIGNED	DATE	-	CHECKE	DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00-05133 04
SOIL BORING ID	TP 7			
NORTHING / LATITUDE		347238 151	DATE / TIME STARTED	11/11/2008 10 00
EASTING/ LONGITUDE		12778791 47	DATE / TIME FINISHED	11/11/2008 10 15
SURFACE ELEVATION		10-27-14-1 ····		-
ORILLED 8Y			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC.	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Silty sand and gravelifill light brown	
	1	Ĺ			0.5		
				,	1		
1					15		
Í	·		l.		2	Light gray ash / cinder material including	
		1			2 5	miscellaneous rocks and concrete	
				0	3	PID @ 3 = 0	
					3 5		
					4	Sand and gravel fill light brown with	
			. [ı	45	vanous light gray ash / cinders	
		ľl			5		
í l				0	5 5	PID @ 5 5 - 0	
					6	Gravelly fill material and water @ 6	
]		[Ĭ		6 5		
					7		
		1 1			7 5		
		1	l				
1							
			1	J			
					•		
}			i	ľ			
		ļ					
i I							ı
	1						
				l			
			ľ	ľ			[
			- 1	ľ			

DRILLING METHOD		DRILL RIG	BORING DIAMETER	
		2.4	7	
Ath Ilh	1/15/09	(A)		2/2/09
SIGNED	DATE	CHECKED		DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 8			
NORTHING / LATITUDE		347261 801	OATE / TIME STARTED	11/10/2008 14 20
EASTING/LONGITUDE		12778754 48	DATE / TIME FINISHED	11/10/2008 14 40
SURFACE ELEVATION				
ORILLEO BY		<u></u>	LOGGED BY	Nathan Weber
ORILLING COMPANY	Kessler Environmental			

NO	TYPE	REC.	BLOWS	PIO	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Sandy fill light brown	
[0.5		
1	1	1			1		
,					15		
1 1					2	Dark ash fill type material black (no odor and no visible staining)	
i I					2.5		
		l			3	Gravelly fill with large construction debns / rocks	
1 1		H			35	[Construction debns includes copper tubing steel wheel rings]	
ĺĺ		l			4		
ł I					4.5	Dark sand and gravel wet (no odor and no visible staining)	
[]				0	5	PID @ 5 = 0 Water @ 5	
					55		
1 1	ı	1	İ	1	6		
ľ					65		
					7		
l [1		7 5		
			i				
				ł			
			I				
			i				
		ľ	ľ				
			ļ				' <u> </u>
							j
-		- 1	ĺ				
]	\dashv		i
			- 1		_		

DRILLING	G METHOD		DRILL RIG	BORING DIAMETER
th	Zleh	1/15/09		2/2/09
SIGNED		DATE	CHEPTE	DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 9	· · · · · · · · · · · · · · · · · · ·		
NORTHING / LATITUDE		347286 895	DATE / TIME STARTED	11/10/2008 13 50
EASTING/ LONGITUDE		12778690 42	DATE / TIME FINISHED	11/10/2008 14 00
SURFACE ELEVATION				
DRILLED BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC.	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Sandy fill light/brown	
i i	1		Ī	ľ	0.5		
					1	Light gray ash cinder material sand and gravel appearance]
1 1	'		1		15		
					2	Light brown sand and gravel	
f l)			2 5		'
				0	3	PID @ 3 = 0	·
1 1			1		3 5	Sand and gravel native materials	
					4	Clay light gray to brown mottled and moist	
		l	ļ		4 5	(no odor or staining)	
1 1			<u> </u>		5		
1					5 5		
]				0	6	PID @ 6 = 0 Water @ 6 Dark gray sand with organic odor also	
1 1					6.5	visible sea shells and wood debns	
ll]	l)	7		
1 1				į	7 5		
1							
l) i							
			ŀ				
i 1							
1 1		1		9			
1 1		1					
i i			ľ		ļ <u></u> _		
1 1				ĺ			
	J] ,				
			ľ				
	j		ŀ	ļ			

DRILLING METHOD		DRILL RIG		BORING DIAMETER
Ath Elch	1/15/09		Alt	2/2/09
SIGNED	DATE		CHE KED	DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 10			
NORTHING/LATITUDE		347302 789	DATE / TIME STARTED	11/10/2008 12 30
EASTING/ LONGITUDE		12778656 84	DATE / TIME FINISHED	11/10/2008 12 50
SURFACE ELEVATION				
DRILLED BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Sand and gravel fill material some coal fragments	
İ					0.5	layers of sand type fill and ash materials]
f	Í	í	·	ì	1		
}	j			ĺ	15		
ļ	ļ	1		ļ	2	Some metal brick and concrete including ash type fill materials	ļ
i	ŀ	1			25		
1				0	3	PID @ 3 = 0	
<u>'</u>	1	l l			35		
,	[1 1			4	Same as above switching to oxidized / rusted metal color	1
	[1 1	j		45	lots of metal fragments	}
	1	!			5		
				0	55	PID @ 5 5 = 0 Water some pieces of fiber near water	
		l J			6	interface sand and gravel light brown in color	
					65		
					7		,
			ľ		7 5		
			Į.				Į
			j				
		1		1	' 		
		1	ľ				j
			l				
			l l	ļ			
		IJ					J
		1	1)			
			ľ				
			1	{	<u> </u>		-
l			İ				
ļ							
<u>i</u>]			

DRILLING METHOD	DRILL RIG	BORING DIAMETER
Airly The	h 1/15/09	(1) 2/2/09
SIGNED	DATE	CHECKED DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 11			
NORTHING / LATITUDE		347324 513	DATE / TIME STARTED	10/10/2008 10 40
EASTING/ LONGITUDE	<u> </u>	12778622 88	DATE / TIME FINISHED	11/10/2008 11 00
SURFACE ELEVATION				
DRILLED BY			LOGGED BY	Nalhan Weber
DRILLING COMPANY	Kessler Environmental	·		

NO	TYPE	REC	8LOW\$	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Sand and gravel (0.1)	_
					0.5		_
					1	(1 2) Mixture of rusted metal and fine black sand	_
]					1/5	(no odor or visible staining)	
ĺ				0	2	PID @ 2 = 0	_[
					2 5		_
					3		<u>.</u>
1					35	Miscellaneous fillimaterial consisting of rusted metal	_
					4	and molten metal (slag)	_
			ı		4 5		_
ł					5	Sand and gravel with ash material light gray with small	_
					5 5	quarter size pieces water at bottom	_[
		П		0	6	PID @ 6 = 0	_
1 1		ll			65		_
					7		_
				I	75		.
]]							
			ď				<u> </u>
							<u> </u>
							-
							.
							.
			ŀ				
			j				.
			1				.
[[ĺ				
							.] [
							.

DRILLING METHOD	DRILL F	BORING DIAMETER
Life Telas	1/15/09	Mt 2/2/09
SIGNED	DATE	CHECKED DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 12			
NORTHING / LATITUDE		347346 942	DATE / TIME STARTED	11/10/2008 10 10
EASTING/ LONGITUDE		12778583 82	DATE / TIME FINISHED	11/10/2008 10 20
SURFACE ELEVATION				
DRILLED BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Sand and gravel fill with some concrete and metal	
					0.5	(no odor andino visible staining)	_
		1 1			1		_[
		1 1			15		
		ſſ			2	Some larger gravel	_{
]]			2 5		
)		1	j		3	Sand and gravel fill metal nails concrete	
		Ιİ			3 5		_
))		ìi	1	0	4	PID @ 4 = 0	_
		ll			4 5		_[
		1 1	ſ		5	Same as above with lighter color sand fill	_
		()			5 5		_
ŀí		ll		0	6	PID @ 6 = 0	
		j			65	Obstruction @ 6 7 could be pipe	
					7		_[
		1		- 1	7 5		<u> </u>
]
1		1	Ì				_[
			ł				
1		1	Ì]
l			l	Į			<u> </u>
			- 1	ľ			
		, ,	- [ļ			_
J		1	- 1				
			- 1	ŀ			
J				ľ			.
1		1	}	ł			.}
				ŀ			
1			1	1			

DRILLING METHOD		DRILL RIG	BORING DIAMETER
Ahr. Ell	1/15/09		1 2/2/09
SIGNED	DATE	CHECKEA	DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 13	<u>., </u>		
NORTHING / LATITUDE		347360 803	DATE / TIME STARTED	1/1/10/2008 9 30
EASTING/ LONGITUDE		12778557 66	DATE / TIME FINISHED	11/10/2008 10 00
SURFACE ELEVATION				
DRILLED BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0_	Sand and gravel fill light brown with some rubble	
					0.5	also small pieces of silt ino odor and no visible staining	
1				ł	1		
J					15		
		H			2		
		1			25		•
ď			ļ		3	Sand and gravel well graded some construction	
ľ]			3 5	debris including bricks (no odor and no staining)	
1		1 1			° 4	desire meaning characters (no easy and no diaming)	1
					45		
1			,		~ <u>~</u>		
1					55	Sand and gravel well graded sand fill near bottom also moist at	
•			1	0			
j				٠	6	bottom concrete obstruction PID @ 6 = 0	
1		1			65		
1		1			7		
]					75		
l							
)							
ĺ		ı	ſ				1
	ľ						
ł		- 1	ł	1			
		1		- (
- 1				ł			
- 1	ļ		Į]			
ļ	Į		- 1				

DRILLING METHOD	DRILL RIG	BORING DIAMETER
Ath Zleh	115/09	2/2/09
SIGNED	DATE	CHECKED DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 14		,	
NORTHING / LATITUDE		347376 515	DATE / TIME STARTED	11/10/2008 13 20
EASTING/LONGITUDE		12778528 43	DATE / TIME FINISHED	11/10/2008 13 40
SURFACE ELEVATION				
DRILLED BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	2 asphalt sandy fill with some gravel brown	
		, ,			0.5	also bricks and some ash materials	
		J i			1		_
					15		
		1 1			2		_
		fl			25		
				0	3	PID @ 3 = 0	-
		1 1	Î		35	Fill materials (no odor and no staining)	_
		1			4		
		[[Į.		4.5	Bricks metal and piece of pipe	_
		1 1			5	Silt and fine dark brown sand wet	
		l		0	5 5	(no odor and no visible staining) PID @ 5 5 = 0	
		li	ſ		6	Water @ 6	
					65		
					7		
1		•		ł	7 5		
i							
			1	Ì			
į		l					_
- I				ľ			
i		' j		ł			_
			ľ				
ł			ł				7
			į				<u> </u>
į			1				_
}	}	}	1	ł			-
							_
]				l			
1	1		1	ľ			~~

DRILLING METHOD		DRILL RIG	$\sim 11/$	BORING DIAMETER	
Lih. Ell	1/15/09		M	2/2/69	
SIGNED	DATE	-	CHECKED	DATE	

PROJECT LOCATION	Plainwell Mill	***	PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 15			
NORTHING / LATITUDE		347346 627	DATE / TIME STARTED	11/10/2008 9 00
EASTING/LONGITUDE		12778533 34	DATE / TIME FINISHED	11/10/2008 9 22
SURFACE ELEVATION				
DRILLED BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC.	BLOWS	PIO	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
				1	0	Light brown top soil with gravel fill some debris	
				I	0.5	no odor some rubble visible	
}				I	1		_
1					15	1	_
IJ		1		j	2]
			1	į	2 5	Light brown gravel sand rubble fill some asphalt	_
				1	3	no odor and no staining	
ŀ					3 5		_
]			4	Melted metal (slag) ash	
			1		4 5	Additional ash fill sand and gravel	_
			1	'	5	(no odors and no visible staining)	1
					55		-
1 1				! !	6		
[]			ĺ	0	65		.[
	I				7	PID @ 6 7 = 0 Light brown to gray silty clay some water	.
	1				75	at bottom	
							1
			ŀ				
l			ļ				
		1	, i				.[
<u> </u>		ĺ					. 1
ł ł			· .				
i l							<u> </u>
1			ŀ				
		ŀ	1	1			.
		1					
				ļ			1
1 1				l			
			l				

DRILLING METHOD			BORING DIAMETER		
Ath. zll	1/15/08	_			2/2/09
SIGNED	DATE		CHECKER		DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 10	6		
NORTHING //LATITUDE		347373 02	DATE / TIME STARTED	11/12/2008 11 00
EASTING/ LONGITUDE		12778539 77	DATE / TIME FINISHED	11/12/2008 11 10
SURFACE ELEVATION				
DRILLED BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC.	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
	_				0	Sand and gravel dark brown in color with	
		ŀ		i	0.5	large rocks (angular) and some concrete	
1		1 1		İ	1		
ĺ					15		
					2		
		ł I			2 5		_
					3		_
I		1			35	Same as above	
		}			4	Sand and gravel brown to dark brown changing to	
					45	silty sand and light brown sandy gravel	_
					5		
					55		
	'				6		
					6 5		
					7		
ľ				ľ	7 5		_
		1	- 1				
				ĺ			
ļ							
ŀ			1				
1		1	}	Į.			
ŀ		1		Ī			
ļ				l			_
ľ		1]	Ì			
J				j]
{	ļ	H	ļ.	ł			1
			ŀ	ł			-}
				ļ		_]
1	ľ	1	ł	1			-

DRILLING METHO	Ď.	DRILL RIG		3 DIAMETER
Ath	Tel 1/15/09		CAR	2/4/19
SIGNED	DATE		CHECKAD	DATE

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 17	<u> </u>		
NORTHING / LATITUDE		347225 796	DATE / TIME STARTED	11/12/2008 11 30
EASTING/ LONGITUDE		12778831 44	DATE / TIME:FINISHED	11/12/2008 11 45
SURFACE ELEVATION				
DRILLEO BY			LOGGED BY	Nathan Weber
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC.	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Sand and gravel fill dark light brown with concrete / rebar	
)	'			0.5		
	l	ļ l		ļ	1		
					15		_[
		l			2		
		ίI			2 5		
					3	Large stone 6 8 with some sand and gravel	
		l			3.5		
		•			4		
			J		4 5		_
					5		_]
					5.5		
					6	Dark clay and sand with some gravel	_[
		l í			6 5	with vanous dark gray to black stnations	_
					7		_
Į					7 5		_
			İ	1			_]
Į.			I	(_[
			1	Į			_]
1							<u>.[</u>
J		ŀ	í				
]
			1				}
		ľ					
			[
l							
		- 1	1	1			<u> </u>
j							1
		ı		}	===		1

DRILLING METHOD		DRILL RIG	BORING DIAMETER	
Jeh. Zleh	1/15/09 DATE	CHECKEO	2/2/09 DATE	
JONES	DATE.		UNIC	

PROJECT LOCATION	Plainwell Mill		PROJECT NUMBER	00 05133 04
SOIL BORING ID	TP 18	···		
NORTHING / LATITUDE		347210 073	DATE / TIME STARTED	11/12/2008 13 15
EASTING/ LONGITUDE		12778852 53	DATE / TIME FINISHED	11/12/2008 13 40
SURFACE ELEVATION				
DRILLEDIBY			LOGGEDIBY	Jim Hutchens
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
			ļ		0	Topsoil 0 6	
		1			0.5	Sand and gravel fill dark brown	_
		1			1		1
1		1		'	15		- L
					2		
]			2 5]
					3	Construction debris concrete asphalt and metal strapping	
1 1		}			35	sand fill with black ash	
		ll			4]
}		il	İ	\	4 5		-
		ll	ľ		5		-
\		 	}	•	5.5		-
]					6		
ľ		H			65	Water @ 6 5	1
		l			7	Wood/debns concrete petroleum ador	
					7 5		
					8		
			Į	1	8.5		1
			Ì	ſ	9	End of test pit @ 9 bgs]
			ļ				1
ı				1]
			ľ				
				İ			
1			- 1				
			ì	1			1
			ľ				1
	ļ	ĺ					1
		1	ļ				1
	j		Ì)]]
i	- 1		ł				1

DRILLING METHOD		DRILL RIG	BORING DIAMETER
Hh Talah	1/15/09		2/1/09
SIGNED	DATE	CHECKER	DATE

PROJECT LOCATION	Plainwell:Milf		PROJECT NUMBER	00-05133 04
SOIL BORING ID	TP 19			
NORTHING / LATITUDE		347184 665	OATE / TIME STARTED	11/12/2008 14 20
EASTING/LONGITUDE		12778865 83	DATE / TIME FINISHED	11/12/2008 14 40
SURFACE ELEVATION				
DRILLED BY			LOGGED BY	JimiHulchens
DRILLING COMPANY	Kessler Environmental			

NO	TYPE	REC	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Topsoil 0 6	
		ΙI			05	Sand and gravelibrown asphall @ 6	·
					1		
			,		15		
					2	Seam of black ash lype material @ 2	
		H			25		
					3		
		ΙI			35		
					4		—
		ii			4 5		
				1	5	Dark brown / gray / black onders / ash material @ 5	
	1]]	J		5.5	Construction debns concrete stone asphalt	_
			ĺ		6		
					65		
•					7	Water @ 7	
	,	H		1	7 5		<u> </u>
ſ	 				8		_
					8 5		_1
l		IJ		ď	9	End of Test Pit @ 9' bgs	
		H					_
			Į.	1			
			ŀ	ı			
ŀ		fΙ	ł				
		-					_ '
		ŀ					_
ł		1					
							7
			ĺ				_
	j		,				-
1		1	ľ				

DRILLING METHOD	DRILL RIG	BORINGI	DIAMETER
Ath. Tible	1/15/09	alt	2/409
SIGNED	DATE	CHECKED	DATE

PROJECT LOCATION:	Plainwell Mill		PROJECT NUMBER:	00-05133.04
SOIL BORING ID:	TP-20)		
NORTHING / LATITUDE:		347210.138	DATE / TIME STARTED:	11/12/2008 15:15
EASTING/ LONGITUDE:		12778835.89	DATE / TIME FINISHED:	11/12/2008 15:45
SURFACE ELEVATION:				
DRILLED BY:		,	LOGGED BY:	Jim Hutchens
DRILLING COMPANY:	Kessler Environmental			

NO	TYPE	REC.	BLOWS	PID	DEPTH	VISUAL CLASSIFICATION AND OBSERVATIONS	COMMENT
					0	Tapsoil 0 - 6"	10000000000000000000000000000000000000
					0.5		
47-					1	Brown sand / gravel, asphalt @ 1'	
					1.5		
					2		
					2.5		
					3	Construction debris with sand / gravel, concrete / metal / brick	
1					3.5		
					4		
		1 1	ſ		4.5		
		ш			5		
- 1			1		5.5		
12.00					6		
		ш			65	Water @ 6.5'	
					7	Miscellaneous pocket of light gray / white clay	
					7.5	with some fiber material	
				- 1	8		
		П			8.5	Black coarse sand / gravel - uniform	
		Ш			9	Terminate @ 9'	
				22			
- [Mark.	
		ш					4
		ш				AL AND A SAMPLE OF SAMPLE	
			1				

DRILLING ME	THOD	DRILL R	IG BO	RING DIAMETER
Hirl.	aleh	1/15/09	M	2/2/09
SIGNED		DATE	CHECKER	DATE

Photographic Log


	Client Name:	Site Location:	Project No.:
Weyerhaeuser		Plainwell Mill – Plainwell, MI	00-05133.04
Photo No.	Date 11/10/08		
Description TP-1			

Photo No.	Date	
2	11/10/08	

Description

TP-1

Saturated Soils from Bottom of Test Pit

RMT

Photographic Log

Client Name:
Weyerhaeuser
Plainwell Mill – Plainwell, MI
00-05133.04

Photo No.
Date
11/10/08

Description TP-1

Sample at 5.5' bgs

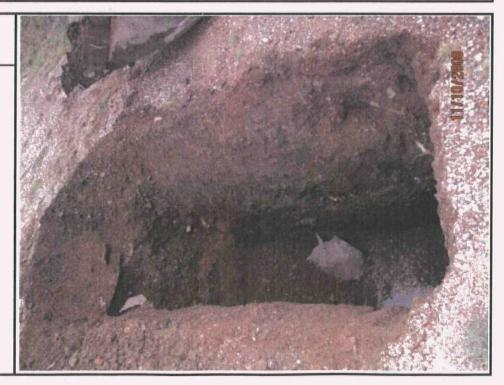


Photo No. Date
4 11/10/08

Description

TP-2

Water in Bottom of Test Pit

Client Name: Weyerhaeuser		Site Location:	Project No.: 00-05133.04	
		Plainwell Mill – Plainwell, MI		
Photo No.	Date			

Description

TP-2

Sample at 6' bgs

11/10/08

Photo No.	Date	
6	11/10/08	
Description		
TP-3		
		11/10/2006

Project No.: Client Name: **Site Location:** Weyerhaeuser Plainwell Mill - Plainwell, MI 00-05133.04 Photo No. Date

Description

TP-3

Sample at 6.5' bgs

11/10/08



Photo No. Date 11/11/08 8

Description

TP-4

Buried concrete and rebar

 Client Name:
 Site Location:
 Project No.:

 Weyerhaeuser
 Plainwell Mill – Plainwell, MI
 00-05133.04

Photo No. Date
9 11/11/08

Description TP-4

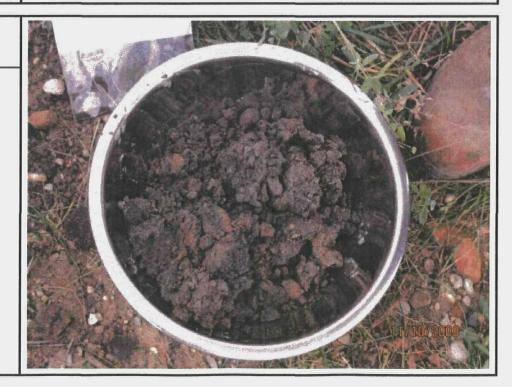

Buried concrete

Photo No. Date
10 11/11/08

Description TP-4

Sample at 5' bgs

Client Name: Site Location: Project No.:

Weyerhaeuser Plainwell Mill – Plainwell, MI 00-05133.04

Photo No. Date
11 11/11/08

Description TP-5

Photo No. Date
12 11/11/08

Description
TP-5

Client Name: Site Location: Project No.:

Weyerhaeuser Plainwell Mill – Plainwell, MI 00-05133.04

Photo No. Date
13 11/11/08

Description TP-5 Sample at 5' bgs

Photo No. Date
14 11/11/08

Description

Tp-5 Sample at 6' bgs

	Client Name:	Site Location:	Project No.:
1 20	Weyerhaeuser	Plainwell Mill – Plainwell, MI	00-05133.04
Photo No.	Date		

Description

15

TP-6

Miscellaneous Broken Concrete, Rocks and Water Entering Test Pit

11/11/08

Photo No.	Date	
16	11/11/08	
Description TP-6		

Miscellaneous Metal

Client Name: Site Location: Project No.:

Weyerhaeuser Plainwell Mill – Plainwell, MI 00-05133.04

Photo No. Date 17 11/11/08

Description TP-6 Sample at 6' bgs

Photo No. Date

18 11/11/08

Description TP-7

Water in Bottom of Test Pit

11,710/2008

Photographic Log

B	Client Name:	Site Location:	Project No.:
	Weyerhaeuser	Plainwell Mill – Plainwell, MI	00-05133.04
Photo No. 19	Date 11/11/08		
Description TP-7			
			11/10/2008

Photo No.	Date
20	11/11/08
Description TP-7	

Sample at 5.5' bgs

Photographic Log

Client Name: Weyerhaeuser		Site Location: Plainwell Mill – Plainwell, MI	Project No.: 00-05133.04
Photo No.	Date 11/10/08		
Description TP-8			

Photo No.	Date
22	11/10/08
Description TP-8	
Sample at 5' bg	s

	Client Name:	Site Location:	Project No.:
Weyerhaeuser		Plainwell Mill – Plainwell, MI	00-05133.04
Photo No.	Date 11/10/08		
Description TP-9 Water in Botto	om of Test Pit	TIAN	
Photo No.	Date 11/10/08		TT .
Description			

Photo No.	Date 11/10/08	
Description TP-9		

	Client Name:		Site Location:	Project No.:
	Weyerhaeuser		Plainwell Mill – Plainwell, MI	00-05133.04
Photo No. 25	Date 11/10/08	For Profit Control		
Description TP-9 Sample at 6' bgs	19.			DA710/2008
	4			

Photo No.	Date 11/10/08	
Description TP-10		
	Metal and Ash	
Materials in Ex		
		11/10/2008
		30 20 20 and a second s

Japan Japan	Client Name:	Site Location:	Project No.:
	Weyerhaeuser	Plainwell Mill – Plainwell, MI	00-05133.04
Photo No. Date 27 11/10/08			
Description TP-10			
Saturated soils test pit	from bottom of		
			4 5 15

Photo No.	Date
28	11/10/08
Description	

TP-10 Sample at 5.5' bgs

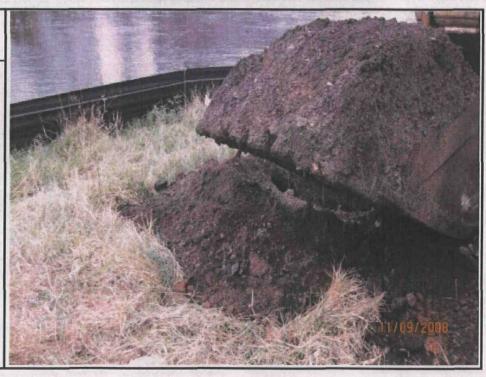

Client Name: Weyerhaeuser		Site Location: Project No.: Plainwell Mill – Plainwell, MI 00-05133.04
Photo No.	Date 11/10/08	
Description TP-11 Water in Botton	m of Test Pit	

Photo No.	Date	
30	11/10/08	

Description TP-11

Miscellaneous Ash and Slag

Materials

	Client Name: Weyerhaeuser	Site Location: Plainwell Mill – Plainwell, MI	Project No.: 00-05133.04
Photo No.	Date 11/10/08		
Description TP-11 Sample at 6′ bg	gs		
			11/09/2008

Photo No.	Date 11/10/08			1
Description TP-12				10.
	. T. VIII.			
	100			
				374
			C TH	OCTUPO .

Client Name: Site Location: Project No.:

Weyerhaeuser Plainwell Mill – Plainwell, MI 00-05133.04

Photo No. Date

33 11/10/08

Description TP-12

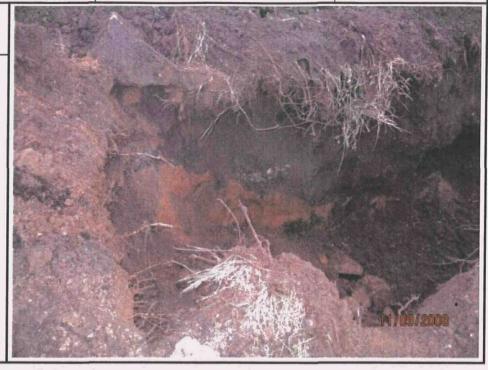


 Photo No.
 Date

 34
 11/10/08

Description TP-12


Sample from 6'-7' bgs

	Client Name: Weyerhaeuser	Site Location: Plainwell Mill – Plainwell, MI	Project No.: 00-05133.04
Photo No.	Date 11/10/08		
Description TP-13			
		11/08/200	

Photo No.	Date
36	11/10/08
Description	

Description TP-13 Sample at 6' bgs

	Client Name:	Site Location:	Project No.:
	Weyerhaeuser	Plainwell Mill – Plainwell, MI	00-05133.04
Photo No.	Date 11/10/08		2000
Description TP-14			

Photo No.	Date			
38	11/10/08			
Description				
TP-14				
Miscellaneous Metal				

	Client Name:		Site Location:	Project No.:
	Weyerhaeuser		Plainwell Mill – Plainwell, MI	00-05133.04
Photo No.	Date	100		
39	11/10/08			
Description			A 200-	To the same
TP-14				
Sample at 5.5' b	gs			11/10/2008

		The latest the latest	
Photo No.	Date 11/10/08		
Description TP-15 Water in Bottor	m of Test Pit	11/0	

Client Name: Site Location: Project No.:

Weyerhaeuser Plainwell Mill – Plainwell, MI 00-05133.04

Photo No. Date
41 11/10/08

Description TP-15 Sample from 6'-7' bgs

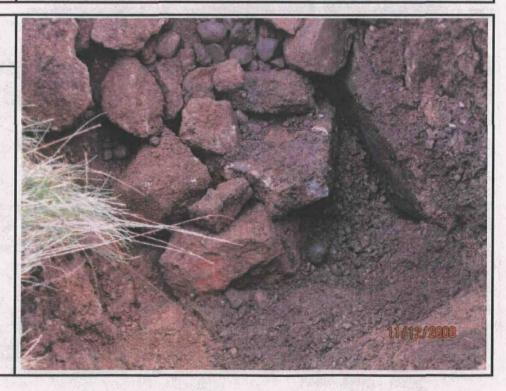
Photo No. Date
42 11/12/08

Description

Description TP-16

Client Name: Site Location: Project No.:

Weyerhaeuser Plainwell Mill – Plainwell, MI 00-05133.04


Photo No. Date
43 11/12/08

Description TP-16 Sample at 5.5' bgs

Photo No. Date
44 11/12/08

Description TP-17

	Client Name:	Site Location:	Project No.:
	Weyerhaeuser	Plainwell Mill – Plainwell, MI	00-05133.04
Photo No.	Date		

Description

45

TP-17

Water in Bottom of Test Pit

11/12/08

Photo No. Date
46 11/12/08

Description TP-17

Sample at 7' bgs

Photographic Log

	Client Name:		Site Location:	Project No.:		
	Weyerhaeuser		Plainwell Mill – Plainwell, MI	00-05133.04		
Photo No.	Date	7/4 39				

47
Description

TP-18

Water in Bottom of Test Pit

11/12/08

Photo No. Date

48 11/12/08

Description TP-18 Sample at 8' bgs

Client Name:Site Location:Project No.:WeyerhaeuserPlainwell Mill – Plainwell, MI00-05133.04

Photo No. Date 49 11/12/08

Description TP-19

Water in Bottom of Test Pit



 Photo No.
 Date

 50
 11/12/08

Description TP-19

Sample from 8' bgs

	Client Name: Weyerhaeuser	Site Location: Plainwell Mill – Plainwell, MI	Project No.: 00-05133.04		
Photo No. 51	Date 11/12/08				
Description TP-20					
			11/12/2009		

Photo No.	Date				
52	11/12/08				
Description					

Description TP-20 Sample at 6' bgs

INDIANAPOLIS . MISHAWAKA . LANSING

TEST

☐ PERMANENT					Job !	No. M15	846
WELL LOG No			County Allegan Township Gun Plaines				
Owner Weyerhae							
		110- 91	W		Section	30 1/4	54
Location Propose					State_Mic	higan	
From Land Des	cription Approx	c. 80' SE of	Bldg. #17				
From Street or	Road Approx	, 300' N, of	Allegan St	and 50'	SW of Re	ce 7	
				190	OM NATURA		
FOR	MATION FOUND -	DESCRIBE FULLY		Depth Top o Stratu	Dapile to		EVE W
F111				0	3	3	
Muddy Sand and	Gravel			3	5	2	
Coarse Sand &	Gravel & Bould	ders		5	30	25	13
Coarse Sand son	me gravel	7 12 22 2	19.1	30	51	21	13
Grey Clay				51	55	4	
1331	1000	1 13 2	5 4				
		1	âres e		-		
Acres and the							
The Charles are							
10.03	7.60.63	100					
						,	
120 18 1800 180						-	
3-17-11	71174			2			1
						1	
g unio	Jalo Deillod L.	X Ca	ole Tool		Rotary Bucke		
	tole Drilled by						
ER, HELPOING							
1k "Scree	n Set From 47	to_50	ft.	Type Ga	uze	Slot0	60
Pumping Test		_CPM at	ft.	Pumping le	vel After _		_ hou
B 1987 Date Completed							

1/2	

☐ TEST INDIAN	APOLIS / MISHAWAKA . LANSING	, , ,	163
T PERMANENT	(2)'/	Job No 158	67
WELL LOG No. S CITY + Lat. Owner We sether user on	- NE	County Car Plain	
() € +1 2 }	36	Section 30	\overline{Z}
Location From Land Description	, E & Midz. #17	SiateFight	
From Street or Road 1/sprost 31	1 H of I legan be and 3"	हेतं क ^र ने एक	

	FROM NATURAL GROUND LEVEL						
erse bang situ some Brenet erse Chane, some bade ed Dang prig Ligner	Depth to Top of Stratum	Depth to Bottom of Stratum	Thickness of Stratum	Statio Water Lovet			
PELL	,	3	3				
Huddy Sand auf fievel	3	د	1				
Coarse Grave' acem sand	3	40	35	14			
Onarse sand with some graves	43	5	•	14			
Orbital bing bigan in 175.							
		<u> </u>					
				-			
	133	0117273		-			
	(i) Replica	A 10 Um	E. 1	•			
	42 (44)	Alay Soy So	4				
	286	3/13					
	The second	200					
			<u> </u>				
				-			
Nev							
		<u>L</u>					

" Dia Hole Drilled by		_Cable To _ Reverse	oo l Circulatio	Rotary Buc		Jetting Auger
" Casing From	" above	ground to_	3 6'	ft b	elow gro	and
"Screen Set From	30 to_	<u>Ş</u> 1	ít	Type Shuttor	Slot	155
Pumping Test 236	GPM at	20	ft	Pumping level After	<u> </u>	hours
Date Completed Nay 21,	3947		Driller .	P lightt		

Pipe ext	ends	0feet	above ground let	rel Job N	o. M15867
				Location: 80' SE of Bldg #17	- 300¹ W
			Level	of Allegan St 50'	SW of Race
				Pipe Tally	Welded Wh eeded
]		'		Bottom	26' 7"
				. Hole Cut culation Method	
		-		Black Steal Pipe lbs. per foot	
			Fill used in 36 Silica Gravel Native Gravel Clay	14 to 3 ft.	
Depth ³⁰ '			LAYNE Shu Opening	tt. of Stainless Steel tter Screen 18 Dias	10 1/2 / 1/2
	\		Silica 13		, 1
			SS Bottom	FIRE WELL LAYNE GRAVEL WALL for	WELL NO. 6
Depth 50 Static Level	14			Weyerhabuser C Plainweil, M	
Римреd	2250	GPM			
Driller P W			-	LAYNE NORTHI	ERN GO. INC.
Date Finished Not drawn to All depths me	scale		Level	DHAWN BY APPROVED BY DATE	DRAWING No

I

H

l

ł

ł

GEOLOCICAL SURVEY SAMPLE No			
tota i in			<u> </u>
	WATER V	VELL REC	ORD MICHIGAN DEPARTMENT
1 LOCATION OF WELL			
C 11y Tow ship Name	· -	Faction	PUBLIC HEALTH Ser I and Number Town Number Number NS EW
Allegan Gun Plains		4	CKIVU 3 / NS / EW
200 N of Allegan St and 20 E	of Scott	81-	3 OWNER OF WELL Plainwell Paper Company
200 ii di Alloguii de aixi le a	2	P.C.	Add ess Plainwell, Michigan
Since of the City of World Local			
Lo 1 will X 1 ect on below Skot 1	Mnp		4 WELL DEPTH (completed) Date of Complet o
			38 ¹ n June 17, 1974
<u></u>			5 Coulo Ioui Rota y Driven Dug
			G USE Dome tic Put is S poly Industry
			Iterior At C rollo o Comme cal
▎▕ ▗ ▗▗▗▗▗▗▗▗ ▗			Mre : Wall
			7 CASING The ded Welded Haight Above/Briow
1 wic	THICKKESS	DEPTH TO	S faceft
2 FORMATION	OF STRATUM	BOTTOM OF	16 to 23 ft Depth We git 62 5 tbs /ft in to 11 Depth D ve Shoe? Yes No X
Top Soil	SIRAIUM	1	8 SCREEN Johnson SS
Coarse Sand & Gravel with Boulders	17	18	lype WW Dia 16"
			Type WW Dia 16" Stot/Gause 055 Langth 15°
Kalamazoo River Alluvium	20 10	38	Sat between 23 ft and 38 ft
Clay '	38		Fitt ngs
Cany			9 STATIC WATER LEVEL
			14 11 below land surface
	1		10 PUMPING LEVEL below land su face
	 	 	20 It alte 8 h s pump ng 1500 cpm
			ft afterhr pumping p.m.
			11 WATER QUALITY DPa LS Por Million
	·	 	tron (Fe)CI lorides (CI)
		,	Atrada
			12 WELL HEAD COMPLETION In App oved P 1
	'		P tiess Adapter 72 Abo e Grade
			13 W It G outed? Yes No
			Nest Cement & Bentonite
		Ì	Depth From 18 It to 38 ft 14 Nee est Son ce of possible contamination
	 		fe rD eat onType
			Well disinfucted upon completion XX Yes No
	i		15 PUMP X Not i stalled
	 	 	Manufact rer s Name
	l	l	Model Number HP Volts Length of Drop P F 1 capacity G P.M.
			Type Submers bis
			Jet Reciprocating
16 Remarks elevation source of data etc	L	17 WATER	WELL CONTRACTOR & CERTIFICATION
		This we	if was drilled undo my jurisdiction and this report is the eat of my knowledge and belief
ADDED INTO PEDRI LER ITEN NO		1	rless-Midwest Ing. 1950
CCT (L TILL)		RIGI	
A FRITH		Add ess	Granger, Indiana
1) I II II O RUCK		9	Pollara Dato 8-23-74
D67d 100M (Rev 12 68)] - 41 EG _	AUTHOR TO REPRESENTATIVE

TEST DRILLING REPORT

Well No TW 88A City Plainwell			County	Allega	n
OwnerPlainwell Paper Company	· • · · · · · · · · · · · · · · · · · ·		Township_	Gun Pl	aines
			Section	nw\se\	NE of 30
Location			State	Michig	an
50' South of Kalamazoo River and 300'±	West of I	arge Wat	er Tower	,	
600'± North of Allegan Street					
GRADE ELEVATION ABOVE MEAN SEA LEVEL - 7	21'± 2'				
FORMATION	Top of Formation	Bottom of Formation	Thickness	Static Water Level	50% SIZE
Black Sand, Gravel, Brick and Rubbish	0 0'	6 5 1	6 5 '	<u>-</u>	_
Brown Med to Coarse Sand & Gravel	6 51	11 0'	4 51	91	045
Brown Coarse to Med Gravel & Sand, Some Very Coarse and Some Stones	11 0'	29 0'	18 0'	91	150
Brown Coarse to Very Coarse Gravel & Stones with Sand	29 01	33 0'	4 0'	91	300
Hard Gray Clay, Some Gravel	33 0'	38 O'	50'	-	
Gray Very Dense Silt w/Very Fine Sand	38 0'	41 5'	3 51	-	
Hand Gray Clay, Some Gravel	41 51	45 01	3 5'	-	
	1				
	<u> </u>		1		
		<u></u>			
-3/4 Die hole drilled by hollow-stem auger	Dat	e complet	ed1/3	L2/88	
None casing set to	SC	reen set f	from	to	· • · · · · · · · · · · · · · · · · · ·
ft ofscreen recommen	ded from _		to	·	
Recommended screen slot size Tubular well Not Rec	bebrenmen	Gravel	Pack well	Not Rec	ommended
Water analysis IronPPM			G		
Job No. 6904		ologist Jon		A Annab	

TEST DRILLING REPORT

Well NoTW_888 City_ Plainwell			County	Alleg	an
OwnerPlainwell Paper Company			_Township_	Gun P.	laines
			Section	NE SE	(NE% of 3
Location			State	Michig	gan
100'± South of Kalamazoo River & 100':	t West of 1	Mill Rac			
of Building #11 (#1 Beater Shop), and	20' East	of Build	ing #11A	(Machin	e Shop)
GRADE ELEVATION ABOVE MEAN SEA LEVEL - 7	L7'± 1'				
FORMATION	Top of Formation	Bottom of Formation	Thickness	Static Water Level	50% SiZE
Black Sand, Gravel, Brick & Fill	0'	61	61	-	_
Brown Muddy Sand & Gravel	6*	11'	į 5†	7*±	-
a Medium to Coarse With Fine Gravel	11'	431	321	71±	150
Hard Gray Clay, Some Gravel	431	45*	21	-	-
			1		
	 	<u> </u>	 		
			 	<u></u>	
			<u> </u>		
5-3/4 hollow-stem super			1/	25/99	
5-3/4 Dia hole drilled by hollow-stem auger					
one casing set to 36" x 18" G					
ft ofscreen recomme			to		3
Recommended screen slot size Tubular well Not R	ecommended	Gravel	Pack well	155	***
Water analysis Iron PPM			G		
Job No6904	Site Ge Orlller	ologist <u>Cook W</u>	Joel A	Annable ing	<u> </u>

MICHIGAN DEPARTMENT OF PUBLIC HEALTH GLOLOGICAL SURVEY NO WATER WELL AND PUMP RECORD PERMIT NUMBER LOCATION OF WELL County Alleran Section Number Township Name Town Numbs Ranga Number oun Plajues M WASPAUL M (N/S E/M 3 OWNER OF WELL Distance And Direction From Road I tersect on PLAINWYLL LAPLE CORPANY oo' South of La Imazoo kiver and 300' I West of large Water Tower, 600' North of Allegan Servet Plainer II. el Address Same As Well Location? Yes No treet Address & City of Wall Locat o 4 WELL DEPTH (completed) Date of Completion Loc te with X in Section Below Sk i b Man 1~1.2-86 Ħ Hote y 6 Cable tool Dr ve Dug Hollow od ___ Jelled 8 USE Domestic Type IP blc TYP HIP DIK Heat pump no reg ul Type Ila Public Test Well Type Ilb Public 7 CASING Steel Threaded He ght Above/Below Presinc Welded | S riace ______ fi _m to _____ ft depth THICKNESS DEPTH TO We ght _____ lbs /ft FORMATION DESCRIPTION 2 ____ in to _____ ft vienth STRATUM Grouted Ord Hole Diem ter ☐ Yes Black Sand, Gravel, Brick and ____tn. to _____ft_depth 6 5 ☐ No 6) n to _____ fi depth Brown Red to Course Kand & B SCREEN Not Installed 4 5 Gravel 11 0 Typ __ __ Diamete . Brown Coarse to Med Gravel & Sand. Sipi/Gauze __ Length _ 18 0 29 U Some Very Coarse and Some Stones It end ___ Brown Coarse to Very Course Gravel FITTINGS X Packer Lead Packer Dremer Check & Stones With Said 4 0 33 0 Blank above screen ____ fi Other_ 9 STATIC WATER LEVEL Hird Gray Clay, Some Gravel 5 0 38 0 ___ fi below lend surface 10 PUMPING LEVEL below land surf ce Ging Very Denre Silt w/very kine 3 5 41 5 __ it afte ____ hipumping at _____ GPM _faft ____h s pump ng et ___ Hard Gray Clay, Some Ga wel 3 5 45 0 11 WELL HEAD COMPLETION 12 above grade Piless adapte Basement oilset App aved pri 12 WELL GROUTED? No Yes Fam ______II Meat cament Bentorite Other___ No of bags of coment ____ 13 Namest source of possible contem net on _____ Distance ______ i) Ovection ___ Will distribute disposition The Tes N Mot Installed P mp Installet on Only Manufacturer & name ___ RECEIVED Ha Irin of black Healen Le gih of Drop Pipe ____ . It capacity Submers ble □ Jet __ រប្រុខ្នាប់ PRESSURE TANK Manufacturer s name ... ONE A THOU SHEET IN MESOSE BY CALL THE ENVIRONMENT OF A 1 ST Model number . Capacity _____ Gallons WATER WELL CONTRACTOR'S CERTIFICATION 15 Remarks elevation source of data etc ()(()) alio val Herrith Ct This well was dilled under my jut saliction and this aport is true to the best of my knowledge and bakel PETRILES-MIDWEST, INC 1250 REGISTERED BUSINESS HAME REGISTRATION NO B O Box 26 - 51255 RitterweetRd.

Littleger, IN 405589 5-12-8

Authority Completion Penalty

5-12-88

D67d 2/84

CCOLOCICAL FUNKY NO		•	JMP RECORD PERMIT NUMBER
1 LOCATION OF WELL		- Ta	
County Tawnship Name		Fraction	Secian Number Town Number Range Number
alles in Gua Dr Im 3		M W	51. 14 14 1 1
O stones And Direction From Road Intersection 100 stones of the Aller to the Liver & 100 stones of the Aller to the Liver & 100 stones of the Liver	001+ HI.	of	PLASSIBLLY PALLE COUPANY
inil Rau, Jo Moril of Bualdan #			Addies
"non), ad all brue of sufficient			Pleas Wall EL
C1 eel Address & City of Well Location	licz		Address ame As Well Location? Yes No
	Statch Map		4 WELL DEP H (completed) Date of Completion
			45 ft 1 25-78
			5 Cable tool Rate y Driven Oug
			Hollow rod Auger Je ted
1 "			BUSE Domestic Type I Public Typ HI P bl c
			☐ Imigation ☐ Type its Public ☐ He i pump
			Test Well Type lib Public
│			7 CASING Steel The eded Height Above/Below Plastic Weighed Steel
hand to be a second	THICKNESS	DEPTH TO	Suriace
2 FORMATION DESCRIPTION	OF STRATUM	TO MOTTOR	un to ft depth Weight lbs /ft
			Grouted Drill Hole Diamete In to ft depth Drive Shoe
Black Sand Gravel, Brick & Bill	6	6	in to fi depth No
			8 SCREEN Not Installed
Brown Buddy and & Grevel	5	11	Type Diameter
From Fedium to Course with Find		· -	Siol/Gauze Length
Gravel & Medium to Correct Sand	1 34	L-43	Sel betweenft_ andft.
Hard Gray Clay, Some Gravel	~	45	FITTINGS K Packe Land Packer Bleme Chack
THAT OF STREET STREET	 -		Stant above screenf1
]	1	1	7 IL below lend surface Flow
			10 PUMPING LEV L galow land surface
<u> </u>		<u> </u>	f afterh p mping atGPM
			it alter his purnoing a G P M
		 _	
}			COMPLETION Pritors adapte 12 abo a grade
	. -	·	Basement offset Approved pt
	1	l	No Yes From to ft
	T	·	Neat cement Bentonitar Other
}		ľ	No of bags of coment Additives
			13 Nea est source of possible contemination
			Type Distance IL Direction
	}		
	THETT	ļ 	14 military
pa ' Di	of of 115	1 1 175	Not metalled Pump Installation Only
	 	l	Manufecturer's name HP Volts
j	N S 6 13	8 ₽	Length of Drop Pips If capacity G P M
		45.	TYPE Submersible Jei
	f Envioles mail beadl		PRESSURE TANK
, KCIID II			M nefecture 3 name
USE A SHO SHEET W NEEDED		1 10 111-	Model number
15 Remarks elevation source of data etc		This we	R WELL CONTRACTOR'S CERTIFICATION: all was drilled under my justediction and this report is true best of my knowledge and ballef
		Pre	RLLSS-HIDWEST, INC 1250
•			REGISTRED BUSINESS NAME REGISTRATION NO
		Addres	4. Tanger IN . 46530
		Signed	1. Lee 16 Date 5-13-08
D67d 2/84		-	ANTHORIZED REPHESENTATIVE

MICHIGAN DEPARTMENT OF PUBLIC HEALTH						
CEULOGICAL SURVEY NO WATER WELL AND PUMP RECORD						
PERMIT NUMBER						
1 LOCATION OF WELL County Township Name		Frection	Section Number Town Number Range Number			
Allegan Gun Plai	nes	1/4	1/4 1/4 30 RNS ENN			
Distance And Direct on From Boad 1 lessect on			3 OWNER OF WELL			
115' South of River, 100' West of M 10' North of Building #11	Simpuon Plainwell Paper Company Add oss Plainwell MI Address Same As Well Location? Ve No					
St e t Addres & City of W II to toon Lo ate with X in Section Below Si						
20 010 01111	toton mop		42 FT 6 15 (88 Heplacement W #			
FIRE WELL	E Cable tool Rotary D ven Dug Hollow cod Auger Jetted RC B USE Domest c Type I Public Type IL Public It igation Type fla Public Host pump					
			Tast Wel Type IIb Public TFTRE			
			7 CASING Steel Threeded Height Above/Belong			
2 FORMATION DESCRIPTION	THICKNESS OF STRATUM	DEPTH TO BOTTOM OF STRATUM	18 in to 22 ft d pth —in to ft depth —in to ft depth			
			Ground Dill Hor Dames Drive Shop Yes Yes No			
F111	0,	61	n corre			
Medium & Coarse Gravel & Boulders	6,	251	Type SSWW Distribler 1893			
THE THE THE THE THE THE THE THE THE THE			Stot/Gaute 150 Length 20!			
Medium Gravel, Rocks	25'	33'_	Set between 221 tt and 491 tt			
Medium Gravel, Rock & Some Sand 33'			PITTINGS K Packe Lead Packe B eme Chack Benk above screen ft Oil et 9 STATIC WATER LEVEL			
]	0 —			
Clay		i —	10 PUMPING LEVEL below land surface Flow			
Stopped in Formation	l	1	1 26.5 It after 8 hrs pumping at 3006G PM			
			f1 alie hrs pumping at GPM			
	<u> </u>	ļ 	11 WELL HEAD States of 144 hours and			
	1		11 WELL HEAD			
			12 WELL GROUTED? No A Yes From D' to 17 11			
	 	 	☐ Nest cement ☐ Bentonte ☐ Other			
	<u> </u>		No of bags of cemant Additives			
1	1	1	13 Nearest source of possible contemination Type			
	 		Wall d sinfected upon completion? Yes No			
			We ald well plugged?			
			14 PUMP: Not in talled P mp Installation Only			
			Menufactural s name			
RECEIVED		}	Model number HP Volts			
		lealth	Length of Drop Pipe			
DLC 1 2 1988			PRESSURE TANK			
1	< 1288_		Manufacturer s are			
15 Remarks elevation source of data attained to EIIV	ronmant.	HE LAVATE	Mode number Capacity Gallons R WELL CONTRACTOR S CERTIFICATION			
16 Remarks elevation source of data etg. accumotional	Health G	11 CO JULE MI	n was drilled u der my jurisdischlon and this report is t ue best of my k owledge and bel ef			

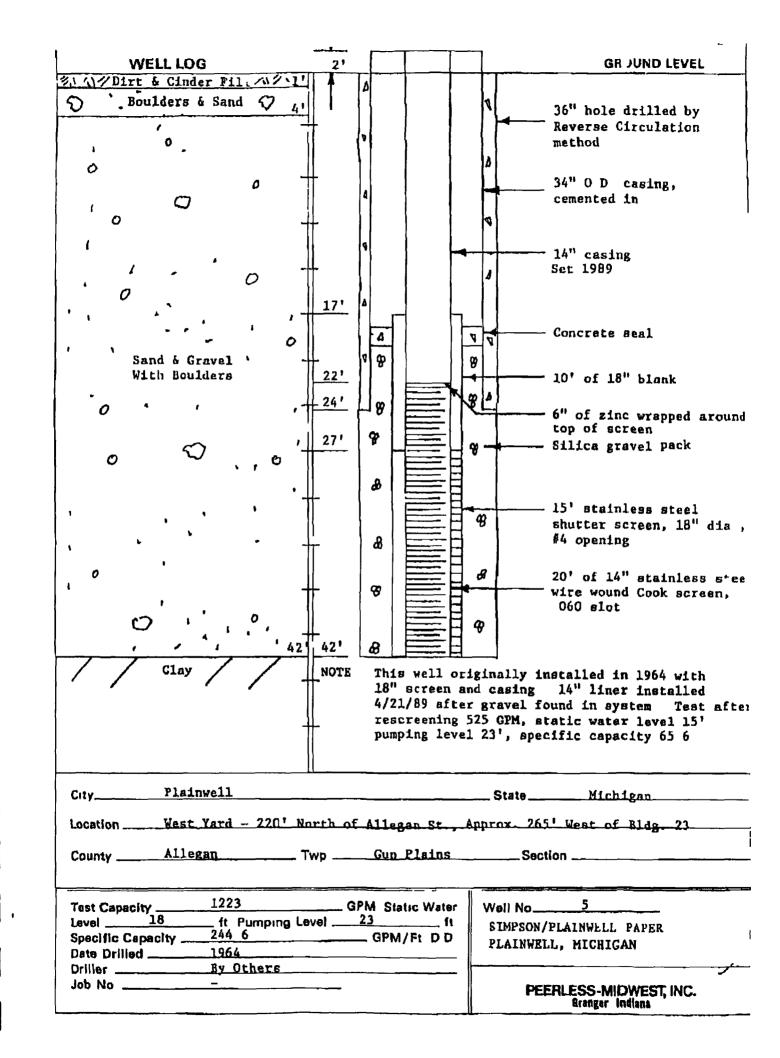
Peerless-Midwest Inc. 1250
REGISTRATION NO
Addres 1255 Bittorsweet Rd., Granger, IN 46580
Signed Date 6/15/85

D67d 12/85

Well Log Attached

Russell Jones

17 Rig Operator a Name


Authority Completion: Penalty: A t 388 PA 1978
Requi ed
Conviction of a viol from
I any provi to 1
misdemas or

	WELL LOG	2'		GROUND LEVEL		
				10 Yds sand and Bentonite seal, From 0' to 17'		
	0 0 0 Gravel & Boulders 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17'		36" hole drilled by R C method		
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22' 8 8 9 9 42'		24' of 18" steel pipe from 2' above ground to 22' below ground 20' of 18" stainless steel, wire wound screen 150 slot openings Set from 22' to 42' 10 Yds gravel From 17' to 42'		
,	CityPlainwell			StateMI		
22	·	100' West	of Mill R	ace, 10' North of Building #11		
4	I. Allacen — Cum Diadean and 20					
الله وحدده	Test Capacity			Well No <u>FIRE WELL</u> SIMPSON PLAINWELL PAPER COMPANY PLAINWELL, MICHIGAN		
78.2	Driller Rusty Jon Job No 7169			PEERLESS-MIDWEST, INC Granger, Indiana		

MICHIGAN DEPARTMENT OF PUBLIC HEALTH					
	WELL A	AND PU	MP RECORD FERMIT NUMBER		
1 LOCATION OF WELL County Townsh p Name		Fraction	Section Number Town Number Renge Number		
Allegan Townsh p Name Gun Plain	és	1/4	4 4 30 / (NS 11 EN)		
Distance And Direction From Road Intersec on			3 OWNER OF WE'L		
West Yard - 220' North of Allegan St Approx 265' West of Building 23			Simpson-Plainwell Paper Co Address 200 Allegan Street Plainwell, MI 49080		
Street Address & City of Well Local on			Address Seme As Well Location?		
	ket h M p		4 W LL DEPTH Deta Completed		
WELL #5 RESCREENED			5 Cable tool Rots y Driven Dug H II w d A D Jetted		
#			8 USE Domest c Type I Publ c Type III Publ c Heat p mp Tast Wall Type III Publ c Heat p mp		
<u> </u>			7 CASING Steel Threaded He ght Abb e/Below Plastic Welded I Surface 1		
2 FORMATION DESCRIPTION	THICKNESS OF STRATUM	DEPTH TO BOTTOM OF STRATUM	in to it depth Weight lbs /ft		
Dirt & Cinder Fill	1,	1,	in to ft depth Orive Shoe Yes		
			8 SCREEN * Not Installed		
Boulders & Sand	3'	4'	Type Cook SSWW Dhameter		
Sand & Gravel with Boulders	381	421	Skot/Gause UOU Length 20° Skit between 22 It and 42 It FITTINGS - K-Pack - Leed Pack - 8 mar Check		
Clay STOPPED	IN FORM	TION	Blank above screenft. Othe		
			8 STATIC WATER LEVEL. After Rescreening 15 11 below land surfac		
INFORMATION TAKEN FROM ORIGINAL DR	ILLER'S	LOG	10 PUMPING LEVEL below i nd surface After Rescreening 23 ti siter 8 hrs pumping at 525 Q.P.M.		
IN 1964			tt site hrs pumping et G.P.M		
			11 WELL HEAD COMPLETION P tiess adapter 12 above grade Ba ame t offset Approved pit		
			12 WELL GROUTED? No Yes From to ft		
			Neal coment Benton to Other		
			No of bags of cement Additives 13 Nearest source of possible contamination		
	<u> </u>		Type D stance !! Direction		
			Well desurt cled up in completion? Yes \(\text{No} \) We old well pi gged? \(\text{Yes} \) No		
	+		14 PUMP Not installed Pump Installet on Only Manufacturer's name		
			Model number HP Valts		
	 	 	Length of Drop Pipe ft. capacity G P M		
			TYPE		
			Manufacturers name		
15 Remarks elevation source of data etc	Model number Capacity Gallons R WELL CONTRACTOR S CERTIFICATION				
* 6" of zinc wrapped around top of	all was dolled under my juristict on and this report a true best of my knowledge and belief				
OUR WELL LOG IS ATTACRED	OUR WELL LOG IS ATTACRED Per				
17 Rhg Operator's Name	_:		P.o. Box 26, Granger, IN 46530		
		Somed	Michael Stanoge Dato 6/26/89		

Authority Completion Penalty

Act 368 PA 1976 flequired Conviction of a vi lation of any provision is a misdemosercy

TEST DRILLING REPORT

Well No	TW 89B	City	Plainwell Plainwell			County	Allegan	
Owner	Simpson Pl	ainwell Pa	aper Company			Township_	Gun Pla	ines
						Section	nciscin	Cl of 30
Location						State	Michiga	<u>n</u>
63' Kast	of TW 89A, 3	18' West o	<u>f Center Main</u>	<u>tenance</u>	Receivin	g Dock E	Doors.	110!
			of Paw Paw Ri					 -
GRADE ELE	VATION ABOV	E MEAN SE	A LEVEL - 71	71 ± 11				stimated
	FORM	MATION		Top of Formation	Bollom of Formation	Thickness	Static Water Level	50% SIZE
Asphalt			····	0'	0 2'	0 2'	-	
			to Cs Grave	0 2,	8,	7 8'		
	ome Boulders			0 2	8'	/ 8.		
	vith Sones &			81	165	851		1 -
			Gravel & Cs	_	T	<u></u> -	 	
Sand, So	ome Stones, S	Some Silt	& Clay	16 5'	231	6 51	7'	100
	Wet Brown Me		y Cs Gravel	231	381	15'	7'	150
						<u> </u>		
Gray Si	lty Clay			38'	39'	1'		<u> </u>
					i		1	1
ļ				 			 	
<u> </u>				 	 	 		
				<u> </u>	<u> </u>	ļ		<u>-</u>
	= =			i	 	 	<u> </u>	
							!	
<u> </u>					1			
				l •	L	l <u></u>	l	
r 3/1 -	_	1		.			unuat k	1000
7-114 D	is note drilled b	OA TOUTTOR	stem auger	Dat	e complete	3aA	uguat 4	1707
None	casing sat to	`		B.C	reen set f	rom	to	
	_ ceamy set to	· — · · · · ·		36	10011 901 1		(U .	
20	_ft_of <u>18"</u>	\$0	reen recommend	ad from	18	to		38
			r well <u>NOT REC</u>					<u>' w/ 100"</u> S
	als fron							
_				Site Geo			mable/Jo	hn Barnhar
Job No	7970			Driller	Jon C	ook	****	

TEST DRILLING REPORT

Well No TW 89A City Plainwell			County	Allegan	
Owner Simpson Plainwell Paper Company			Township.	Gun Plai	nes
			Section	ne se i ne	of 30
ocation			State	Michigan	
Approximately 25' NW of Small Water Tank &	651 Sout	h of Paw	Paw Riv	er, 173'	West
of Fire Well				<u></u>	
GRADE ELEVATION ABOVE MEAN SEA LEVEL - 7	17' ± 1'			E	stimated
FORMATION	Top of Formation	Bottom of Formation	Thickness	Static Water Level	50% SIZE
Asphalt	0'	0 21	0 2'	- '	-
Brown Med to Cs Sand & Fine to Very Cs Gravel Fill, Some Bricks & Concrete	0 2'	41	3 8'	_	_
Brown Silty Med to Cs Sand & Fine to Ver Cs Gravel, Some Stones & Boulders	4'	81	41	-	-
Wet Dark Brownish-Gray Muddy Fine to Cs Gravel & Med to Cs Sand	В'	16'	8'		_
Wet Dark Gray Muddy Fine to Very Cs Cravel & Med to Cs Sand	16'	22 5'	6 5'		_
Wet Brown Med to Very Cs Gravel & Cs Sand Some Stones, Some Clay & Silt	22 51	30 51	8'	7'	100
Wet Brown Gray Cs to Med Sand & Fine to Med Gravel, Little Silt	30 5'	38'	7 5'	7'	050
Dense Dry Gray Silty Clay, Occasional Gravel	38'	441	6'	-	_
	j				
				Ì	
				 	
	ļ				
E 3//	<u></u>	<u> </u>	. 9/6	/80	
5-3/4 Dia hole drilled by hollow-stem auger		•			
None ' casing set to'					
ft ofscreen recommend					
Recommended screen slot size Tubular well NOT RECO	MMENDED	Gravel	Pack well	NOT RE	COMMENDE
Water analysis Iron PPM	h Site Ge	ardness ologists	Joel A	PG PH Annable/J	ohn Barn
Job No7970	Driller		n Cook		

	MICHIGAN	DEPAF 1	MENT OF	F PUBLIC HEALTH	ر ۔۔۔۔
FEOLOGICAL SURVEY NO	WATER	WELL A	AND PU	MP RECORD PERMIT NUMBER	<u>l</u> i
1 LOCATION OF WELL			le		
County Alleyan	Township Name Gun Plaines		Fraction	SE 1/4 NE 1/4 30 Town Number Franch SE 1/4 NE 1/4	اح
D stance And Dr egt o F om Road In			11214	SE 1/4 NE 1/4 30 / (1/1/5 // 6	W
					_
63' East of TW 89A,				Simpson Plainwell Paper Company Add 200 Allegan Street	y
Receiving Dock & Do & 85' South of Paw		i fire	MeTT	Plainwall, MI 49080	1
St of Address & City of Well Local (Add ass Same As Well Local on? Yes No	
Locat with X in Section Below		eich Mes		4 WELL D PTH: Date Completed New Well	
				39-T 8 4 189 Replac me t Well	
 	Test Well 89	B		5 Ceblo tool Role , Dug	9
(2)				H How d X Augar let a	
 *┡╼╬╾╬╌╬				6 USE Domest c Type I F bl c Type III Publi	- }
				☐ trigation ☐ Typ 11 Publi ☐ H at pump	
				Trast Well Type Rb Public	
╎┈┦┈┇┈┙ ┉┥┺╸				7 CASING Steel Threaded He ght Above/Below	
M LE		THICKNESS	DEPTH TO	NONE Princ Welded SurfeceIt	
2 FORMATION DES	CRIPTION	OF STRATUM	BOTTOM OF	m to ft d plh	- }
			- Olinarion	Grouted Onli Hole D ameter Drive Shoe Yes	1
Asphalt		0 2'	0 2'	n to ft depth No No	l
Brn Med to Cs Sa	nd & Fine to Cs			8 SCREEN Not lost alled	\neg
Gravel Fill, Some B	ldrs & Concrete	7 81		NONE Type Diamete	
Wet Dark Brownish-G	ray Muddy Fine t	o Cs		Sign/Course Le gith	
Gravel with Stones			16,5'		
Wet Dark Gray Fine				SITTINGS K Packer Load Pack r Bemar Ch k	·
Sand, Some Stones,			231	Blank above screen ft Other	_
Heaving Wet Brown M		1	26.3	1	
& Ce Sand with Sto	nes	15'	381	7 to blow land u f Frow	—¦
Gray Silty Clay		1,	39,		I
Cray Birry Cray		<u> </u>		ft afterhrs pumping at G P M ft after hr pumping at G P M	- 1
				it alia in pointing at G F M	•
				11 WELL HEAD Pittess adapter 12 abo e grade COMPLETION Basement offset App oved pit	
				12 WELL GROUTED? No Yes From to	_11
	<u> </u>	<u> </u>		Neat cement Sentonite Othe	
		 	<u> </u>	No of bags of cament Additives 13 Nearest source of possible contaminano	
				Type Distance11 Direct o	1
		to the	 	Well disinfected upon completion? Ye No	
	Mich Ocpt of Pul	ic Heal'		Was old well plugged?	
	SEP 1 9 19	+		14 PUMP Not installed Pump installation Only	\neg
		-	 	Ma utact ers name	
	Bureau of Environm	ental and		Model number Ho Volt	<u> </u>
	O:Lunational-Healti	t GW75		Le gih of Drop Pipe it copacity G TYPE Submersible Jet	PM.
				PRESSURE TANK	
		·		Manufacturer a name	l
VISH A DAY A DRU	METOED	· 		Model number Capacity Ga	allons
15 Remarks elevation source of	d data etc			R WELL CONTRACTOR S CERTIFICATION	
1				ell was driffed under my jurisdiction and this raport is true bast of my knowladge and belief	

Poor lean Midwell, Inc. Address P. O. BOX 28. CYBROX, IN 46530

Signed Markonize Representative Date 8/31/89

Authority A 1 388 PA 1971

Completion Required Conviction of a work of any p. in

A 1 385 PA 1978
Req ired
Conviction of a violation
of any p is
ml d meaner

17 Rig Operator a Name: John Cook

DB7d 12/85

MICHIGAN DEPARTMENT OF PUBLIC HEALTH GEOLOGICAL SURVEY NO WATER WELL AND PUMP RECORD PERMIT NUMBER LOCATION OF WELL Township Name Fraction Section Number Town Number Range Numbe County Allegan Gun Plaines NE 4 SE 4NE 4 30 3 OWNER OF WELL Distance And Direct on From Road Intersect on Approximately 25' NW of Small Water Tank & 65' So Simpson Plainwell Paper Company Address 200 Allegan Street of Paw Paw River, 173' West of Fire Well Plainwell, MI 49080 Add ess S me As Well Local on? The Ran No. St net Address & City of Well Local On WELL DEPTH. | Date Completed | | New Well Lucate with X m Section Balow Sketch Map 8 4 189 Beplacement W II 6 Cable tool Ratary Doven Cord [] TEST WELL 89A N Auger ☐ Jetted Do wolloH 6 USE Domestic T pe IP bh Type III Public Type Na Public Heat pump noiteg vi X Test Well Type Ub Public 7 CASING Steel Th end d Ho ghi Abp a/Below NONE Plastic Welded | Surface ______ it THICKNESS DEPTH TO ___ lbs /li Weight ___ 2 FORMATION DESCRIPTION OF STRATUM fi depth STRATUM Growted Drill Hole D ameier Yes _ m to ____ ft depth D No 0 2' Asphalt n to _____ft dopth Brn Med to Cs Sand & Fine to Ver 8 SCREEN Not installed NONE Cs Gravel Fill, Some Bricks & Concrete 41 __ beameter __ Type ___ Bru Silty Med to Cs Sand & Fine to __ Lenoth Very Cs Gravel, Some Stones & Bldrs 81 _ neswied te2 _ 11 and ____ FYTTINGS K Packe Lad Packer Bramer Chack Wet Dark Brownish-Gray Muddy Fine to Cs Gravel & Med. to Cs Sand 81 16' Blank above screen ____ ft Other _ 9 STATIC WATER LEVEL Wet Dark Gray Muddy Fine to Very Cs 7 6.51 tt below land surlace 22.51 Gravel & Med to Cs Sand 10 PUMPING LEVEL below land surface Wet Brown Med to Very Cs Gravel & Cs Sand, Some Stones, Some Clay & Silt 30.5' _fi afte ____ hrs pumping at ____ GPM Wet Brown Gray Cs to Med Sand & Pine _____ ft after _____ h a pumping at __ ___ G P M to Med. Grayel, Little Silt 381 11 WELL HEAD 12 above grade Dense Dry Gray Silty Clay, Pines adepter COMPLETION 44" Besoment offset App aved pit Occasional Gravel 12 WELL GROUTED? ☐ No ☐ Yes Fram ______ to ___ Bet to Dther_ Nest coment No of bags of cament _____ Additives . noisemeated each loss of the contamination ft Direction BECHIVED __ D stance _ Mich Dent of Public Health Wek disinfected upon completion? Yes No ☐ No ☐ Yes Was old well plugged? SEF 1 \$ 1989 14 PUMP Mot Installed Pump Installet on O ly Manufacturer's name __ Bureau of Environmental and HP ______ Volts __ Model number _____ Orchational Health CWOS _fr capaci y ___ Length of Groz Pros Submersible Jet ___ PRESSURE TANK.

Peerless-Midwest, ITC 1980
REGISTRATION NO
REGISTRATION NO
Address P.O. Box 26. Granger, IN 46530

This well was diffled under my jurisdiction and this report is true

Menufacturers name.

16 WATER WELL CONTRACTOR'S CERTIFICATION

Model aumber .

to the best of my knowledge and belief

Address P.O. Box 26, Granger. IN 46530
Signed Market Appendicular Dote 8/31/89

D87# 12/85

17 Rig Operator's Neme

John Cook

USE A 2ND SHEET IF REEDED

15 Remarks, elevation source of data etc

Authority Completion P n ity:

_ Capacity ____

Act 366 PA 1978
Required
Conviction of a lostion
of any provision is a
misdemeaner

_Gallons

		•		
WELL LOG				GROUND LEVEL 720'
102110011001110011100111001100110011001	1//		/	36' Hole drilled by RC
元学 FILL ツジ	1 V/	1 1		Method
	1//	1 1		
111501100111001110011 81	1//	d Y	/	Sand & Bentonite Seal
	V /		/ /	
4	13'	1	/)	
GRAVEL & BOULDERS	00		v Z	16" Steel Pipe
		 	4	To Steel Fipe
	18' 00		00	
201			6.	
GRAVEL WITH SILT & BOULDERS	23' /"		*	5' of 16" SS WW 0 060" slot Screen
· er \$751			00	SCIEEN
a " a a " u	σp		•	
	0.		4.	
GRAVEL	1.0			15' of 16" SS WW 0 100" slo
	0	<u> </u>	,,	Screen
351	[
GRAVEL WITH TRACE SAND 381	38'			Gravel Pack
1 '				
HARD CLAY				
+				
1				
]				
]				
1				
1				
1				
<u> </u>				
1 4				
† †				
ll.				
CityPLAINWELL			State_	MICHIGAN
Location 110' W of Fire Well 6 8	5' S of Kal	amazoo l	River	
County Allegan Two	. Gun Plaine	ים אויד י	110 ^	oction <u>NE SE NE 30</u>
County Allegan Twi	b	- 4 44 IV.	<u></u> 50	OCHOA NE 36 AR JU
				
Test Capacity 1515	GPM Stati	c Water	Well No.	8
Level 12 ft Pumping Leve			SIMPSO	N/PLAINWELL PAPER COMPANY
,	GPM/	FLDD		
Date Drilled			PLAINW	ELL, MICHIGAN
Jab No 8137			6	EERLESS-MIDWEST, INC
				Gradger Indiana

ı

I

1

ı

I

MICHIGAN DEPARTMENT OF PUBLIC HEALTH GEG OGICAL SUPVEY NO WATER WELL AND PUMP RECORD PERMIT NUMBER 1 LOLATION OF WELL Township Name Frecison Section Numbe Town Number Панра Нитра County NE 4 SE 4 NE 4 N/9 Gun Plaines ₹/W Allegan Distance And Direction F T Road Intersection 3 OWNER OF WELL 110' West c. Fire Well & 85' South of Simpson/Plainwell Paper Company Kalamazoo River Address 200 Allegan Street Plainwell, MI 49080 St get Add ess & City of Well ocation Address Same As Well ocation? 4 WELL DEPTH Date C mpleted Loc 16 with X in Section Below X New Well Sk Ich Map , 11' 15 , 89 ' Replacement Well 38 FT 5 Ceble tool Rota y Onvan Dug Dat wolloh Auge Jetted KI_ KC WELL #8 6 USE Domest c Type III P bi c Type I Public He t pump K Type He Public It roat or Type Ro P blic Test Well 7 CASING Demoter Steel Threaded Height Ab c/EddXXXX Plast c Welded I Surfac 2 16 n 10 18 11 depih DEPTY TO BOTTOM OP STRATUM THICKNESS We ght ___ _ fbs /ft 2 FORMATION DESCRIPTION Grouted Drill Hote D metar 36 to 13 ji depth NUTARIZ D IVE Shoe Yes XI No F111 81 81 ii depth BSCREEN ☐ Not Installed 121 201 Gravel & Boulders Type SSWW _ D ameier ___ 16" Slot/Gauze 060/8-100 Length 51/151 51 Gravel with Silt & Boulders 257 FITTINGS | K Pecker | Lead Packer | Brame Chock 101 351 Blank above screen _____ ft Othe _ Gravo1 A STATIC WATER LEVEL 381 <u>3</u>' Gravel with Trace Sand It pelow land to face O PUMPING LEYEL below land surface Hard Clay 19 It alter 8 has pumping at 1515 GPM ___ It also ____ has pumping at _____ GPM 11 WELL HEAD P fless adapter 12 4dbove grade COMPLETION Besement offs 1 Approved pol 12 WELL GROUTED? No X Yes From ____ 0 to ___ 13_ II Benion te Other ____ Neal cement No at bags of cament _____ Add trv s 13 He reet squice of po sible contamination ft Direction Type ____ Drstance □ No □ No Yes old wall plugged? Yea Pump Installation Only Not installed MICH Dept of Public Health Manufectu er sineme Model number ____ Volts __ Length of Drop Ripe ft capec ty _ G.P M DEC 1 9 1989 TYPE Subme s ble D Je! __ PRESSURE TANK BUREAU OF ENVIRONMENTAL AND Manufacturer s name ... 15 Remarks elevation source of data etc NAL HEALTH-GWOS Geltons Capac ty ____ Model number. 18 WATER WELL CONTRACTOR S CERTIFICATION

This well was chilled under my jurisdiction and this report is true to the basi of my knowledge and belief PEERLESS-MIDWEST, INC

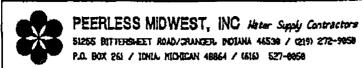
1980 REGISTRATION NO

SMAN SERVICUS DERETEIOSE 17 Rig Operator s Name

Well Log is Attached

Russell D Jones

Address P. O. Box 26.


Granger 1N 46530 Signed Michael Ryphesentative 12/1/89

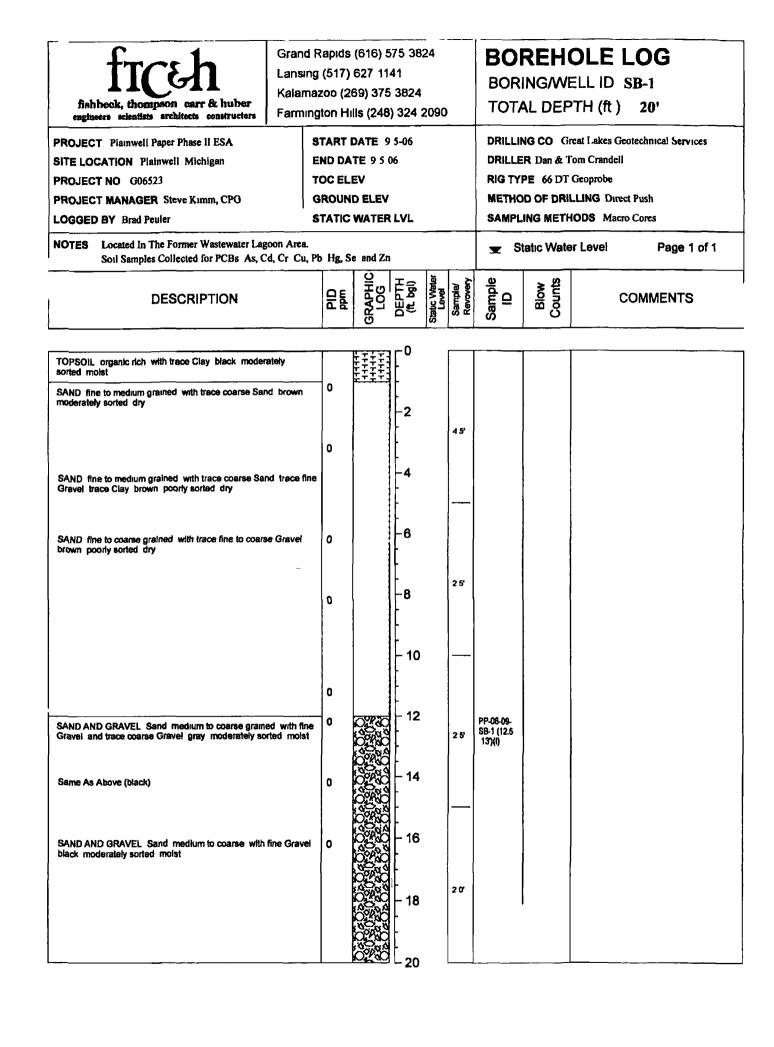
D874 2/89

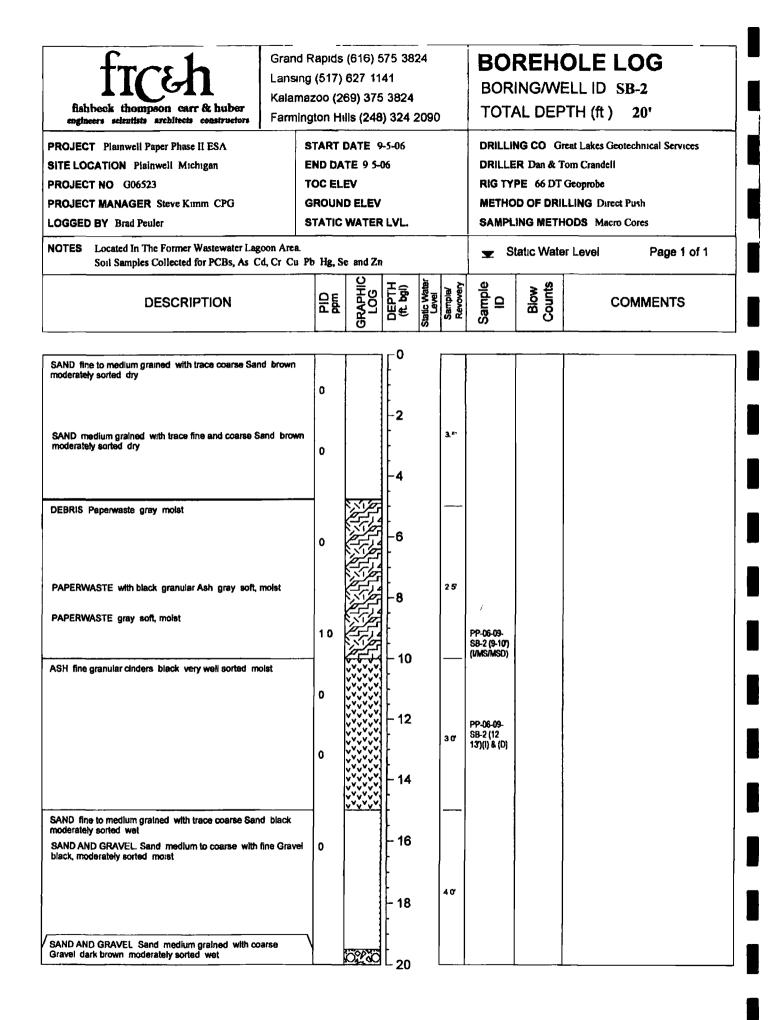
Authority Completions Pensity:

Act 368 PA 1978 Required
Conviction to viliation
of any provision so
misdemeshed

30-1N-11W

WELL
COMPLETION DATE 3/1/95
JOB NUMBER 11803


DRILLING REPORT


OHNER Simpson Plainwell Paper HELL NO Te	st Boring	g 95A	
CITY Plainwell STATE IN COUNT	ry Alle	gan	
CIVIL TOWNSHIP Gun Plain T IN R 11W SECTION LOCATION 158' N of Centerline of Allegan St + 10 5' E of W Fence	NW 1 SE	1 NE	1 30
LOCATION 158' N of Centerline of Allegan St + 10 5' E of W Fence	e Line (Pence w	ith
GROUND ELEV 730' + 5' CASING HEIGHT ABOVE GRADE N/A STAT	IC LEAEL X	KINXX 10 rade)*
FORMATION ESTIMATED	50% SIZE	TOP	ВОТТОМ
		0'	11/21
Red-Brown, Loamy Fine-Medium Sand, Some Coarse Sand & Fine			
Gravel, Trace of Medium Gravel	0 013"	13,	3'
Medium Brown, Slightly Loamy, Medium Sand, Some Coarse Sand			
& Medium Gravel	0 017"	3'	81/21
Coarse Sand & Fine Gravel, Some Med Sand & Med Gravel, Little			
Coarse Gravel	0 040'	8 ³ 2 '	10'
Coarse Sand & Fine Gravel w/Some Med & Coarse Gravel	0 050"	10'	13'
Saturated, Fine Gravel to Coarse Sand, Some Med Sand & Med			
Gravel	0 047"	13'	281/21
Saturated Med to Coarse Sand w/Some Fine Gravel & Med Gravel	0 030"	281/21	30,
Saturated, Fine Gravel w/Coarse Sand, Some Med Gravel, Little			
Med to Fine Sand	0 047'	301	39,
Gray Clay	_	39'	40'
BORING PLUGGED AND ABANDONED			
7-7/8 " DIA HOLE FOR test boring/formation analysis BY holle	ow-stem a	nder	METHOD
None " DIA CASING SET TO _ , None GRAVEL PACK SE			
None " DIA SCREEN WITH " SLOT SE	_	מדי	-
ORILLED TO 40 HELL TESTED BY N/A AT _ GPM FOR _	HOURS WITH	11	- DRAHDOHN
	TOTAL SET	TING OF	
I HELL CASED AND GROUTED WITH	FROM	'T 0	
WHELL ABANDONED AND SEALED WITH Native Cuttings "Hole Plug" Bentonite	FROM	101 01 TO	10'
SITE GEOLOGIST Stephen Geschke DRILLER Greg Nielson,	LICENSE	NO 9	77
I HERETY SHEAR OR AFTEN LADER DE FONLTEES FOR PERLET THAT EDUTTURE OF MASSIFET MITTERED REPRESENTATIVE HERELETH IS TO THE BOST OF MY MICHAEL DESCRIPTION DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST OF THE BOST OF THE BOST OF MY MICHAEL DESCRIPTION OF THE BOST	1200	3/1/	'9 5
		1	

CNXAT	MICHIGAN DEF						PERMITNO	
1 LOCATION OF WELL	WAILNWE	- P-P- W1	1D F G	AIL	NEO			
Gounty Allegan	Township Name Gun Plain		Fraction NW 1/4	SE,	, NE	Section No 30	Town No 1N	Range No 11W
Distance and Directon from Road Inta 158' North of center: 10 5' East of West Fo Mined Tec Fence) Street Address & City of Wall Location	line of Allegan ance Lline (Fanc		£	3	OWNER C Address	Simpson 200 All Plainwe	Plainwell egan Street 11, MI 490 auon X yes [:
Locate with x in Section Below		kelch Map		4	WELLDER 40	PTH Date		lew Well
	test borin	IG 95A		5	Cable Hollow	Tool I	Rotary D Auger/Bored J Type I Public T Type IIa Public H	riven Dug
				7		Sieel Ci		nt Apove/Below
2 FORMATION DESCRIPTION		THICKHESS OF STRATUM	DE TH TO SOTTOM OF BTRAFUM			Plastic V		cefi hikos/ft
1 1		14	151		BOREHO	in	t depth	riva Shoe
Red-Brown, Loamy Fin			<u></u>				tt depth DSI	nas Packer
Some Coarse Sand & Trace of Med. Grav		1321	, . 31	6		-	Gravel Par	
Med Brown, Slightly Sand, Some Coarse			· - · - ·]	Slot/Gavze		Diamete Length t and Bremer Cl	
Gravel		51/2 '	81,				Cer □ Bremer Cr 	
Coarse Sand & Fine G	-	7,4	10.	•		VATER LEVEL	1Swlace F	lowing
Coarse Sand Fine Gr Mad. & Coarse Grav		3'	13'			LEVIL Below u Alter Bailer	hrs Pumping 6	G P Ni
Saturated, Fine Grav Sand, Some Med Sa		15½1	283	卜,		AD COMPLETION		C 1 1 ast 1 Aurh
Saturated Med. to Co		134.	205	1		Adapter nent Offset		
w/Same Fine Gravel Saturated, Fine Grav		14'	301	12	WELL GR	Cement D	Bentonile 🔲 C	1 to ft
Sand, Some Med. Gr		91	201	-	No. ol Bag		Addrives	ATION
Med to Fine Sand Gray Clay		111	391 401	╽¨	Туре	0	stancet.	Direction
USE A ZND SHEET				╂.,	Type PUMP	Not Installe		Direction Only
15 ABANDONED WELL PLUGGED: Casing Charbeterin PLUGGING MATERIAL Cemenu Bentuntus Slurry No of Bags	Depth ft Near Cement Concrete Grout	Sentonde Bentonde	Спірв	1	Manulacu Model Nur	rer's Name nber Drop Pipe Submersible	HP	VolisQP M
16 REMARKS. (Elevation, Source A COPY of our Drill		tached				rer's Name	Capacky_	Gallons
7 DRILLING MACHINE OPERATO	R	This wa knowled		und f	et wild fraujed		eport is true to the b	est of my
Employee Subcontract		Address	ED BUSINESS NA	WE				NEGISTRATION NO
GW 2 228 940 COOK Drill		Address	74	١	100			3/24/95
	(SI OLOCI	CAL SURV	EY (9 - "		Constation 1 tol Son of	Authority: Act 361 PA 9 Ecopolation Regult any provide in micelinates

APPENDIX B

STRATIGRAPHIC INFORMATION
AREA 3 – NORTH CENTRAL PORTION

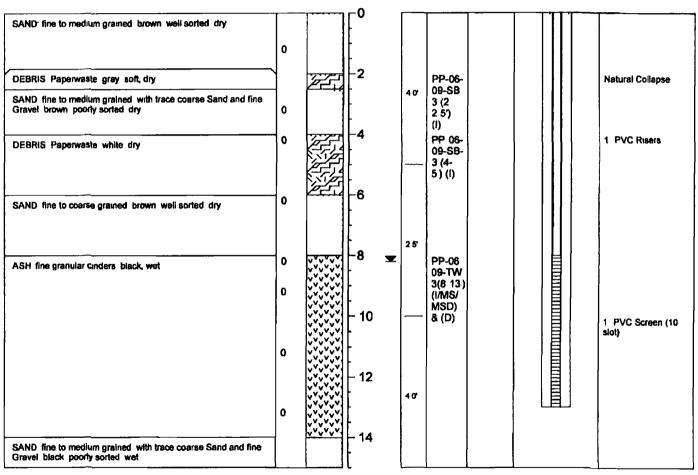
Grand Rapids (616) 575-3824 Lansing (517) 627 1141 Kalamazoo (269) 375 3824 Farmington Hills (248) 324 2090 BOREHOLE LOG

BORING/WELL ID SB/TW-3
TOTAL DEPTH (ft) 15'

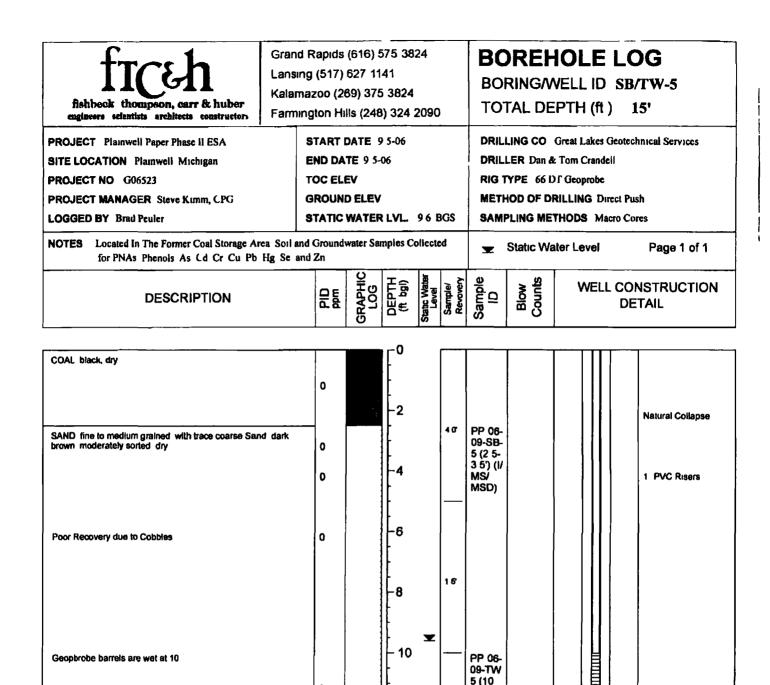
PROJECT Plainwell Paper Phase II ESA
SITE LOCATION Plainwell Michigan
PROJECT NO G06523
PROJECT MANAGER Steve Kimm CPG
LOGGED BY Brad Peuler

END DATE 9 5-06
TOC ELEV
GROUND ELEV
STATIC WATER LVL 8 2 BGS

START DATE 9 5-06


DRILLING CO Great Lakes Geotechnical Services
DRILLER Dan & Tom Crandell
RIG TYPE 66 DT Geoprobe
METHOD OF DRILLING Direct Push
SAMPLING METHODS Macro Cores

NOTES Located in The Former Wastewater Lagoon Area.


Soil and Groundwater Samples Collected for PCBs As Cd Cr Cu Pb Hg Se and Zn

MPLING METHODS Macro Cores

Static Water Level Page 1 of 1

BOREHOLE LOG Grand Rapids (616) 575 3824 Lansing (517) 627 1141 BORING/WELL ID SB-4 Kalamazoo (269) 375 3824 TOTAL DEPTH (ft) Farmington Hills (248) 324 2090 engineers scientists architects constructors START DATE 9-5-06 DRILLING CO Great Lakes Geotechnical Services PROJECT Plainwell Paper Phase II ESA **END DATE 9 5-06** SITE LOCATION Plainwell Michigan DRILLER Dan & Tom Crandell PROJECT NO G06523 **TOC ELEV** RIG TYPE 66 DT Geoprobe METHOD OF DRILLING Direct Push PROJECT MANAGER Steve Kimm CPG **GROUND ELEV** STATIC WATER LVL SAMPLING METHODS Macro Cores LOGGED BY Brad Peuler NOTES Located In The Former Wastewater Lagoon Area. Static Water Level Page 1 of 1 Soil Samples Collected for PCBs As, Cd, Cr Cu Pb Hg, Se and Zn. Sample ID CEPTH (R. bgl) DESCRIPTION **COMMENTS** SAND fine to medium grained brown well sorted dry 0 SAND medium grained with trace coarse Sand brown well sorted dry 0 30 0 SAND fine to medium grained with trace fine Gravel brown moderately sorted dry 0 0 3 75 SAND medium grained with trace fine Sand brown well sorted 8 DEBRIS Paperwaste grayish white fibrous, dry 0 PP-06-09-SB-4 (9-10') **(l)** 10 0 SAND medium grained with trace fine and coarse Sand gray 26 moderately sorted wet 0 SAND AND GRAVEL Sand coarse grained with fine Gravel dark gray well sorted wet

٥

0

SAND medium to coarse grained with trace fine Gravel brown

moderately sorted wet

15')(I/MS /MSD)

1 PVC Screen (10

slot)

12

20

fiehbeck thompson, carr & huber engineers scientists architects constructors	Grand R Lansing Kalamaz Farming	(517) 200 (2	627 11 69) 375	41 3824)	во	REH RING/V TAL DE	VELL	ID	SBA	_
PROJECT Plainwell Paper Phase II ESA SITE LOCATION Plainwell Michigan PROJECT NO G06523 PROJECT MANAGER Steve Kimm CPG LOGGED BY Brad Peuler NOTES Located In The Former Fuel Oil Area. S Chloride (GW only) 8260 Plus VOCs 1	E TG G S	END DATE 9 5-06 TOC ELEV GROUND ELEV STATIC WATER LVL. 10 8 BGS Groundwater Samples Collected for					DRILLING CO Great Lakes Geotechnical Service DRILLER Dan & Tom Crandell RIG TYPE 66 DT Geoprobe METHOD OF DRILLING Direct Push SAMPLING METHODS Macro Cores Static Water Level Page 1 c					sh
DESCRIPTION		SE	GRAPHIC LOG	DEPTH (ft. bgl)	Static Water Level	Sample/ Revovery	Sample ID	Blow	W	ÆLL		NSTRUCTION TAIL
FILL Sand fine grained with trace medium Sand an fragments black, poorly sorted dry SAND fine to medium grained with occ. Cobble fragility brown moderately sorted dry		0		-2		25	PP-06 09-SB- 6(0-1) (I/MS/ MSD) &(D)					Natural Collapse 1 PVC Risers
SAND medium to coarse grained with trace fine Sar fine to coarse Gravel brown poorly sorted dry	nd and trace	0		-6		25						
SAND medium to caorse grained with fine Gravet to moderately sorted wet	in .	0		- 10 - 12	₩.	20	PP-06- 09-TW 6 (10- 15) (I/MS/ MSD) &(D)					1 PVC Screen (10 slot)

Same As Above (brown)

						_	•	WE	LL CONST	RUCTION LO	G								
		3	M			8								V	ÆL	LI	NO M	IW-6	
L																	age 1 c		
Fa	cilit	y/Proje	ect Nar	ne						Date Drilling Started	t	Date	Drilling	-	eted		Project N		
L				rhae	u	ser Mill Gro	oundwater I		tion	12/9/08				9/08				133 0	
Dr	illin	g Firm					Drilling Meth	od		Surface Elev (ft)	TOC	Elevation	on (ft)	Total	-		bgs) B		Dia (in)
L			lateco	Dnl	lır	ng	Holl	ow Sten	n Auger	-					18			4 2	25
Bo	ring	Loca	tion							Personnel Logged By SM/K6	36			Drillin	g Eq	uipn	nent		
										Driller Gary Swift						C	ME 55	LC	
Ci	VII T	own/C	ity/or \	/illage	П	County ⁻		State		Water Level Observ		_			_	_			
		Plau	nwell			Alle	gan		MI	While Drilling After Drilling		/Time /Time	<u>12/9/</u>	08 00.0	<u> </u>	¥	Depth (i		12.5
۱,	AM	PLE	1	T	٦		9			7 tito: 27g			·	Γ		Т			
┝╌	7		-		J									ļ.,		-			
		<u></u>	၂ တ												≥				
		RECOVERY (%)	BLOW COUNTS	DEPTH IN FEET				L	ITHOLOGIC					GRAPHIC LOG	WELL DIAGRAM		CO	MMEN	NTS
NUMBER	삔	Æ	8	Z				U	ESCRIPTION					달	Σ¥				
ğ	5	g	Š	ΙĒ	Ì								nscs	AP	ᆵ	ľ			
Ş	₹	낊	<u>भ</u>	믬	J			_					Sn	GR	¥				
	Ø		3]		Topsoil with						SW		1	1			
1 SS	1	100	3		1	Sand Mo	ostly coarse	sand s	ome medium s	sand little gravel		- /	SM		11	1			
22	1		3		1				vn (7 5YR 4/4)) silt Moist comp	act	- ⅓,-		11111					
	B		3	2	\dashv	\ no odor	Yellow Bro	own (10	YR 5/4)	•	acı	-				8			
,	Ø		3		$\frac{1}{2}$	√Color gra	ades to Dai	k Grayıs	sh Brown (10Y	'R3/2)		_	sw	. ;					
รร	Ø	42	3	ĺ	1	Sand Mo	ostly mediu	n sand	some fine san ng Brown (7 5	d little coarse sa	nd			. ,	a 1				
2 SS	Ø		3	4	1				YR 4/4) with ti						Ø 1				
	Ø		2] "	\rfloor	Sand Mo	stly mediu	n sand	some fine san	d little coarse sa	nd	-							
3 \$S	Ø	58	2	i	4	Moist lo	ose no odo	or Brow	vn (7 5YR 5/4))			sw	***	1	8			
95	Ø		3	l	4	Cooreo	sand decrea	2000							%				
-	Ø		5	6	+		_		ome medium	sand trace fine s	and			3177	a I				
	Ø		5		1				r Light Brown		ai ia				a 1				
4 \$\$	Ø	25	1		1														
L_	И		1	8	_]														
	0		2	ľ	4														
5 \$S	Ø	33	3 5		+									HH	-				
~	0		³ 7		+									13.4	11				
-	Ø		5	10															
6	0	50	7		-														
6 \$8	Ø	58	7			Same as	s above with	n trace g	ravel						月				
L_	0		7	12	\rfloor							İ	SW						
l			3	-	1	∑ Saturate	, d						SM			1			
7 \$S	0	63	5		4	Saturate	ea .								目				
	0		6	l	-										目				
 	Ħ		3	14	\dashv									1,1,1	目				
8	8	40	3	1	1										目	1			
8 \$S	Ø	42	3]									13:11					
L.	Ø		4	16	4									1111	目				
	Ø		3		4	Crossed as	170 IPOP-00							144	目				
9 \$S		46	3		+	Glavei S	ize increase	75						胡柏					
	Ø		7		+							l				\dashv			
-	4		├ ं	18	\dagger	End of b	oring at 18	below o	ground surface					السامعات					
					1		•		-										
]														
<u> </u>			<u> </u>	<u>L_</u>															
									_										
Sig	ınat	ure							Firm RMT		Eer	etr-	402 4		ור י) A C	י פרונ	AL 405	ACT
									1 2025	E BELTLINE AV	こって	ショに	4UZ (SKAN	יט ר	W	ן כעו-	/# 495	+urax

Checked By J Overvoorde

													Page 1	1 of 1	
Facili	y/Proje	ct Nem	10				Date Drilling Starte	d	Date 0	nlling	Compl	eted		ct Number	
	1	Veye	rhaeu	ser Mill Gro	oundwater	Investigation	12/10/08			12/1	0/08		l	5133 06	
Drillin	g Firm				Drilling Met	hod	Surface Elev (ft)	TOC	Elevatio	n (ft)	Total	Depth	(ft bgs)	Borehole Dia	
		ateco	Drillii	ng	Но	llow Stem Auger		<u> </u>				12 5 4 25			
Boring	Locat	ion					Personnel Logged By SM/K	GG			Drillin	g Equ	pment		
							Driller Gary Swift						CME	55LC	
Cıvıl T	own/C	ity/or V	illage	County		State	Water Level Observ While Drilling		/Time	12/1	0/08.00	7 00	7 Dont	h (ft bgs) <u>77</u>	
	Plair	well		Alle	gan	MI	After Drilling		/Time	141	VIVIO VV	74.77		h (ftbgs) <u>773</u> h (ftbgs)	
SAM	IPLE														
NUMBER AND TYPE	RECOVERY (4)	BLOW COUNTS	DEPTH IN FEET			LITHOLOGI DESCRIPTIO				nscs	GRAPHIC LOG	WELL DIAGRAM	C	COMMENTS	
1 5	63	2 2 3		(10YR 2	/1)	ganics and coal frag									
		4	-	and con	crete fragi	ments	•		_/		**				
		4	2-			some fine sand little		æ	_//				1		
2 5S	21	1				s Pale Brown (10Y above with large brid		coal	-/		\bowtie		1		
S		1	4	and grav		abovo manago bno	agon uaco	oou.			\Rightarrow				
-8		3	4]			. }		covery due to roc	
з 🛭	40	3	-						i		\mathfrak{M}		tlp		
3 55	13	3]						ĺ		\bowtie	昌	1		
-19		3 3	6-	Clos Ma	-th: ala:: a	ome silt Medium pla	actions and Dive					慧	1		
. 🛭		1	-	Gray (Gl		ome siit wedium pia	isucity moist blue	ISH	I	CL		甘			
ss S	58	1		_Color ch	ange to D	ark Blueish Gray (GL	.EY2 4/1)			ML					
		6	8-	<u>∨</u> Fill Lens	of crushe	d concrete with coar	se sand and grave	l and	+						
. 🛭		6 8	_	trace silt	Saturate	ed at 7 75	_		Ì	sw	[o]]			
5 SS	42	15	-		stly coars se satura	e sand and gravel litt ted	tie fine sand and tra	ace	l	SM	د ام ^ا م	昌	1		
		16	10-			ım some fine sand	Wet Black (7.5YR	·		<u>5</u> P		目	1		
Ø		4	10_	√2 5/1)	•		•	•	-/1			昌	Poor re	covery due to roc	
6 SS	21	9 6	-	Some s	and and s	ilt with crushed grave	Brown					Ħ			
		11	-						1			量	1		
			12-										1		
]	End of b	oring at 1	2 5 below ground su	rface								
			_												
	,		14-								<u> </u>				
		J	-						J						
]												
			16-												
			-												
			_												
			18-												
			-												
			-												

Checked By J Overvoorde

WILKINS & WHEATON TESTING LABORATORY INC KALAMAZOO MICHIGAN Plainwell Paper Co 80 A-2 LOG OF BORING NO 1 DATE APTIL 10, 1980 SURFACE ELEV 725 9 LOCATION ELEVATION DESCRIPTION FILL Paper waste coal and brick 722 4 3 5 FILL Loose, brown fine to coarse SAND, Trace to and fine gravel Trace coal and brick Concrete rubble at 6 5 12 0 713 9 Medium dense brown fine to coarse SAND, and fine 15 7 710 2 ∇ gravel 20_

- WILKINS & WHEATON TESTING A BORATORY INC KALAMAZOO MICHIGA 80 A-2 Tlannwell Paper Co LOG OF BORING NO 1 DATE April 10, 1980 SURFACE ELEV 725 9 LOCATION SAMPLES SAMPLING RESISTANCE ELEVATION SYMBOL DESCRIPTION Medium dense, brown fine to coarse SAND, and fine gravel 40-43 0 682 9 Extremely dense, brown fine to coarse SAND, trace to little fine gravel, 3" **1**160 677 9 48 0 little to some gray clay 50-COMPLETION DEPTH 48 0 WATER DEPTH 15.7 BAR DATE APRIL 10. 1980

lainw	ell I	Paper Co LOG OF BORING		8	0 A-2
ATE_A	pril	7, 1980 SURFACE ELEV 726	5 4 LOCATIO	N	
SAMPLING SAMPLING RESISTANCE	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT
8312 - 121 - 21 - 235	7 7 7 7 7 7 7 7 7 7 8 7 8	FILL Coal and red brick sand and gravel	8 0	718 4	
-12 -13	0	Loose to medium dense, brown fine to coarse SAND trace to and fine gravel			
47 8	٥		16 5	709 9	
8 4	۵				
455	•				
466	D				
5777	D.				
1	D				

Ar	rıl	7 1980 SURFACE ELEV 726 4		N	
SAMPLING RESISTANCE	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT
566	0	Medium dense, brown fine to coarse SAND, trace to and fine gravel			
			42 5	683 9	
93 100	6 9	Extremely dense, brown fine to coarse SAND, trace to little fine gravel, little to some gray clay	48 5	677 9	
100	計		- 1, 3	<u> </u>	
				1	
					,

Ì	LOG OF BORING NO	3												
SAMPLING RESISTANCE SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT										
445	COAL													
10 18	Medium dense	9 5	716 6											
15_6	brown fine to coarse SAND, and fine gravel	15 7	710 4											
20-15														
25—14 25—15	y													
30 5 - 12														
35 12 13														

P1	21n\(\daggered)	ell	Paper Co	& WHEATON TES KALAMAZDO LOG OF BO	MICHIGAN		INC -	80 A-2	·
DAT	re Ap	rıl	7, 1980	SURFACE ELEV	726 1	OCATI	ON		
SAMPLES	SAMPLING RESISTANCE	SYMBOL		DESCRIPTION		OEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT	
40	477	<i>p</i>	Medium der brown fine and fine g	e to coarse SA	IND,				
		0		·		48 0	683 1		
45 	34 83	1	trace to 1	dense to coarse SA ittle fine gr some gray cla	avel	48 0	678 1		
50									
1 1 - 1 - 1									
1									
COMPI	ETION F	DEPTH	48 0	WATER DEPTH]	 .5 . 7	DATE	pril 7	, 1980	1

Plē	ınwe	211	Paper Co LOG OF BORING NO	4			80 A-2	<u> </u>
ATE_	Apz	1.1	7 1980 SURFACE ELEV 724 7		CATIC	אכ אכ		
SAMPLES	SAMPLING RESISTANCE	SYMBOL	DESCRIPTION	ОЕРТН	SURFACE	ELEVATION	NATURAL MOISTURE CONTENT	
761 435 766	5	747 74 7 7	FILL Coal and brick brown fine to medium sand and coarse gravel Medium dense to dense, brown fine to coarse SAND, and fine to coarse gravel	5	0	719	7	
1233	}	a .	and fine to coarse gravel Occasional cobbles noted	15	3	709 4	-	
878		0						
465	ļ	0						
	9 0	,						
\parallel	}	of						

Pla	alnw	ell		ON TESTING LABOR	ATORY		30 A-2	
				G OF BORING NO 4				
DATE	Ap	rıl	7 1980 SURI	FACE ELEV 724 7	LOCATIO	N		
SAMPLES	SAMPLING RESISTANCE	SYMBOL	DESCRIPT	ION	SURFACE SURFACE	ELEVATION	NATURAL MOISTURE CONTENT	
- - - - 6	1387		Medium dense, brown fine to coar and fine to coar	parse SAND, se gravel	39 0	685 7		
40-19			Extremely dense brown fine to co Trace to little little to some g	fine gravel,	44 0	680 7		
45 - - -								
								1
1 1 1								
, -				\				
							1200	
COMPLE	TION C	DEPTH	44 0 WATER	15.3	DATE A	<u>pril 7</u>	<u> 1980</u>	

A _I	דינה	LOG OF BORING NO		ATIC	n		
SAMPLING RESISTANCE	SYMBOL	DESCRIPTION	DEPTH BELOW	SURFACE	ELEVATION		NATURAL MOISTURE CONTENT
8 6 5	12 ^7 Z	FILL Cinders and Ash	3	0	721	1	
3 24 934		Loose to medium dense brown fine to coarse SAND, trace to and fine gravel					
7 9 8	.0						
5		∇	13	3	710	8	
	0	ŧ					
660	0				•		
8							
	٥						
			32	5	691	6	
72 33	2	Extremely dense, brown fine to coarse SAND, trace to little fine gravel, little to some gray clay				}	

Plainw	ell	Paper Co KALAMAZOO MICHIGAN	ATORY		0 A-2
		LOG OF BORING NO 6			
DATE AP	rıl	7 1980 SURFACE ELEV 725 7	LOCATIO	IN	
SAMPLING SAMPLING RESISTANCE	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT
2 2 2 2 2 3 - 2 - 2	47676767474	Very loose to loose FILL brown fine to medium SAND, trace fine gravel Coal and concrete rubble	7 0	718 7	
10 10 10	Q	Loose, brown fine to medium SAND, trace fine gravel	12 0	713 7	
15-19 15-19	P	\Box	15 7	710 0	
20 68		Medium dense brown fine to coalse SAND, and fine gravel			
25 - 6 25 - 7	a				
30 18	P				
12 14 35 9	۵,				
		See Page 2	38.0	687.7	<u> </u>
COMPLETION			DATE	April	7. 1980

E	Aprı	LOG OF BORING NO 6		N	
SAMPLING RESISTANCE	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT
	0	Medium dense, brown fine to coarse SAND, and fine gravel	38 0	687 7	
36 131 6100	y /	Extremely dense, brown fine to coarse SAND, trace to little fine gravel, little to some gray clay	44. 5	681 2	
100			44)	081 2	
					F
				·	
!					

Plain	well	Paper Co RALAMAZOO MICHIGAN PADER CO		INC -	80 A-2	
DATE_A	prıl	LOG OF BORING NO 4 1980 SURFACE ELEV 722 6		N		
SAMPLES	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT	
77777777777777777777777777777777777777	0	Loose to medium dense, brown fine to coarse SAND, trace to and fine gravel				
10	ð	∇	11 3	711 3		
25 12 - 10 25 10 - 10 21	0	,				
30		6 Brown sand & clay seam	30 0	692 (<u> </u>	
35 35 30	0	Very dense to extremely dense brown fine to coarse SAND, trace to little fine gravel little to some gray clay MATER DEPTH 11 3	33 0			

		Paper Co LOG OF BORING NO 4, 1980 SURFACE ELEV 722 6	7		80 A-2
SAMPLES SAMPLING RESISTANCE	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT
85	a	Very dense to extremely dense brown fine to coarse SAND, trace to little fine gravel, Little to some gray clay		683 1	
- - -					
1					
1111					
OMPLETION	DEPTH	39 5 WATER DEPTH 11 3 BA	R DATE A	prıl_7	, 1980

ATE.	A	prı	LOG OF BORING NO 8 1 8 1980 SURFACE ELEV 724 3	LOCA	Tio	n			
SAMPLES	SAMPLING	SYMBOL	DESCRIPTION	DEPTH		ELEVATION		NATURAL MOISTURE CONTENT	
	<u> </u>	15,475	Loose FILL Black and red cinders and brick		0	720	8		
	5 - -	8	Very loose to loose FILL Red to brown fine to medium SAND, trace fine gravel						
) } •			9	5	715	8		
- - -	, 3 .0	0		13	5	710	9		
			Loose to medium dense, brown fine to coarse SAND, and fine to coarse gravel						
- 1 2		•							
89		0							
978		0		32 0		692	3		
123	물 8	a	Very dense, brown fine to coarse SAND trace to little fine gravel little to some gray clay						

I	Plain	.ell	WILKINS & WHEATON TESTING LABOR Paper Co KALAMAZOO MICHIGAN	RATORY		80 A-2	
			LOG OF BORING NO				
DA	.TE A	lpr1	1 8, 1980 SURFACE ELEV 724 3	_ LOCATIO	N		
9, DEPTH FEET	SAMPLING RESISTANCE	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT	
39	25	2	Very dense, brown fine to coarse SAND, trace to 1 ttle fine gravel, little to some gray clay	40 0	684 3		
-							
-							
-							
-							
-							
COMI	PLETION :	DEPTH	40 0 WATER DEPTH 13.4 BAR	DATE A	pril 8	1980	

Plan	nwe]	WILKINS & WHEATON TESTING LABOR RALAMAZOD MICHIGAN	AIORY		30 A-2	
		LOG OF BORING NO 9				
DATE AT	<u> </u>	4, 1980 SURFACE ELEV 721 1	LOCATIO	ON		
SAMPLING	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT	
12 10 7 3 2 5 - 2 2 2 8 6	4 777 47 7 7 4 4	5" Asphalt FILL Loose to medium dense, brown fine to medium SAND, trace to some fine gravel Coal and cinders	8_0	713 1		
10 80	à	Medium Dense brown fine to coarse SAND and fine gravel	9 5	711 6		
6 15 12 - 10 - 10 20 - 8						
- 8 - 8 7 - 7	•					
30 14	30		33 0	688 1		
42 -158 47 	8	Extremely dense, brown fine to coarse SAND, trace to little fine gravel, little to some gray clay	33 0	000 1		
COMPLETION		H 40 0 WATER DEPTH 9 5 BAR		April 4	1080	

I

ľ

		WILKINS & WHEATON TESTING LABOR KALAMAZOD MICHIGAN LOG OF BORING NO 9 4, 1980 SURFACE ELEV 721 1		8	30 A-2	
SAMPLING		DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT	
35 - 24 - 24 - 37 40 - 44	0	Extremely dense brown fine to coarse SAND trace to little fine gravel little to some gray clay		681 1		
COMPLETIO	N DEPT)	4 <u>400</u> water depth <u>9 5 BAR</u>	DATE A	pril 4	1980	

				ATORY		30 A-2	
DAT	E_AI	Oril	8 1980 SURFACE ELEV 723 9	LOCATIO	N		
SAMPLES	SAMPLING	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT	
5	חאראר היאואי יאראי איאוארן	47 44 4 4 7 7 7 7 4	FILL Very loose coal and cinders				
10		V^ < > V		12 0	711 9 710 9		
15	5 6 5	0	Medium dense, brown fine to coarse SAND, and fine to coarse gravel Occasional cobbles noted			,	
20 - -	7						
25 	8 5	4					
30 30	5					`	
 35 	43 69 102	0 9	Extremely dense brown fine to coarse SAND trace to little fine gravel, little to some gray clay		690 9		
СОМР	LETION	DEPTH	1 38 5 WATER DEPTH 13 0 BAR		685 4 pril 8	, 1980)

_April	LOG OF BORING NO 1 4 1980 SURFACE ELEV 718 0		ON NO	
SAMPLING RESISTANCE SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT
2 1 2 ×××××××××××××××××××××××××××××××××	FILL Ash & cinders sand & gravel	3 0	715 0	
2 3 4 10 23 18	∇	7 1	710 9	
899	Loose to dense brown fine to coarse SAND, and fine gravel			
5 6				
7 6				
6 7 0		27 5	690 5	
60 125	Extremely dense, brown fine to coarse SAND, trace to little fine gravel, little to some gray clay			
39 81		35 0	683 0	_

Plain	well	Paper Co **REATON TESTING LABOR MICHIGAN	ratory 12		0 A-2
DATE A	prıl	LOG OF BORING NO 10, 1980 SURFACE ELEV 720 4		ON	
SAMPLES SAMPLES SAMPLING RESISTANCE	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT
433	1 1 2 2 2 V	Very loose to medium dense			
5 - 3 2 2 2 - 9	7 476 2	sand & gravel coal & cinders brick	8 1	712 3	
10 110	* > * \ * \ * \		11 5	708 9	
- - - 15 - 15	0	Medium dense to dense, dark brown to brown fine to coarse SAND, and fine to coarse gravel			
- 9 - 18 20 -	o				
25 11 11 -	o .				
30 15 - 15	-		32 5	687 9	
35	8	Very dense to extremely dense, brown fine to coarse SAND, trace to little fine gravel little to some gray clay	36 0	684 4	
		See page 2			
COMPLETION	N DEFT	н 39 0 water Depth 8 1 BAR	DATE_	April 1	0 1980

_		LOG OF BORING NO			
A _F	ril	10 1980 SURFACE ELEV 720 4	LOCATIO	N	
SAMPLING	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT
	2		36 0	684 4	
46	AND D	Sand & Gravel layer	38 0	682 4	
46 82 100		Extremely dense, brown fine to coarse SAND, trace to little gravel, little to some gray clay.	39 0	681 4	
			*		
		7			

Pla	nwell	WILKINS & WHEATON TESTING LABOR Paper Company KALAMAZOO MICHIGAN LOG OF BORING NO 13) A-2	
DATE	Aprıl	8, 1980 SURFACE ELEV 722.6		DN		
SAMPLING	RESISTANCE SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	El FVATION	NATURAL MOISTURE CONTENT	
5 - 1		COAL	20	720 6		
5 5	⋄	COBBLE at 4' Medium dense, brown fine to coarse SAND, and fine gravel				
8 - 13 - 8 - 10 10	i i					
- 8 8 8	b	▽	11 5	711 1		
15	6					
20 9	6					
25 10	.					
30 11 12 13	9					
35 12	9		ļ			
		See Page Two				
COMPLET	ON DEP	TH 45 0 WATER DEPTH 11 5 BAR	DATE _A	pril 8	1980	

WILKINS & WHEATON TESTING LABORATORY INC -KALAMAZOD MICHIGAN 80 A-2 Plantwell Paper Company LOG OF BORING NO 13 DATE ADTIL 8, 1980 SURFACE ELEV 722.6 LOCATION SAMPLES SAMPLING RESISTANCE ELEVATION SAMPLES SYMBOL DESCRIPTION Medium dense, brown fine to coarse SAND, and fine gravel 38 0_ 684 6 Extremely dense, brown fine to coarse SAND, trace to little fine gravel, Little to some gray clay 45.0 677.6 **45** 0 11 5 BAR DATE April 8, 1980 WATER DEPTH COMPLETION DEPTH

		27 mu	— WILKINS & WHEATON TESTING LABOR ell Paper Company KALAMAZOO MICHIGAN	ATORY	INC -) A-2	
	• •	<u>C4-2-6 = 7 .</u>	LOG OF BORING NO 14				
DAT	e Ap	rıl_	8, 1980 SURFACE ELEV 723 4	LOCATIO			_
O DEPTH FEET	SAMPLING	SYMBOI	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT	
5	6100 CM-1	0	2' ASPHALT Very loose to dense brown fine to coarse SAND Trace to and fine to coarse gravel				
10-	411 223	O	\	12 5	710 9		
15	13 13 15	o					
20_	16 19 20						
25	ಅಭ6	0					
30 <u> </u>	6 8 11	0					
- 35 	18 15	0		38.0	685, 4		
			See Page Two				····
сомя	LETION	DEPT	H 45.0 WATER DEPTH 12.5 BAR	DATE A	pril 8,	1980	_

			WILKINS & WHEATON TESTING LABO KALAMAZOO MICHIGAN DET COMPANY LOG OF BORING NO	14	80) A-2
DAT	<u> </u>	rıl 8	3. 1980 SURFACE ELEV 723.4	LDCATIO	ON	
C DEPTH FEET	SAMPLING RESISTANCE	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT
33		0	See Page One	38 0	685_4	
40_		q-,	Extremely dense, brown fine to coarse SAND, trace to little fine gravel little to some gray clay			
45	53 74 76			45 0	678 4	
1 1 1 1 1 1 1 1 1	LETION		45 0 WATER DEPTH 12 5 BAR	A)	pril 8,	1980

	———Plaınw		Paper Company LOG OF BORING NO 1			0 A-2	
DA	те 4р	ril	9, 1980 SURFACE ELEV 723 7	_ LOCATIO	ON		
1 \	SAMPLES SAMPLING RESISTANCE	SYMBOL	DESCRIPTION	DEPTH BELUW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT	
5_	10 9 8 7 7 6		Medium dense, brown fine to medium SAND, Trace to some fine gravel Occasional cobbles noted	5.5	718.2		
10-	101	ò	Very loose, Brown fine to medium SAND, and fine gravel				
15-	557	00	Medium dense brown fine to coarse SAND, and fine to coarse gravel Occasional cobbles noted	12.0	711.7		
2 0 -	5 6	0					
25 -	7 6 17	3					
3 0	9 11 12	a					
35	1515CO	· ? ·	See Page Two	37.0	686.7		
	PLETION					1000	

ľ

Plainwe	11 Pa	— WIL IAS & WHEATON TESTING LABOR aper Company KALAMAZOO MICHIGAN	ATORY	80	O A-2
		LOG OF BORING NO 1	5		
DATEAp	ril s	9. 1980 SURFACE ELEV 723 7	LOCATIO	N	
SAMPLING SAMPLING RESISTANCE	SYMBOL	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT
5	0	See Page One	37.0	686.7	
	0	Extremely dense, brown fine to coarse SAND trace to little fine gravel, Little to some gray clay			
36 50 36			<u>44</u> 0	679 7	
T) 30					
<u>-</u>]			· ·		
-	 .		!		
_					
<u>-</u>					
- -					
<u>-</u>					
- <u>1</u>					
<u>-</u>		,			
_					
MPLETION	OFETH		DATE A	prıl 9,	1980

Plainwe	WILKINS & WHEATON TESTING LA KALAMAZOO MICHIGAN LOG OF BORING NO			0 A-2	
рате Ар	oril 9, 1980 SURFACE ELEV 722		N		
SAMPLES SAMPLING RESISTANCE	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT	
- 22 - 22 - 1 - 1 5 - 1	Very loose to loose FILL Coal and cinders sand and gravel				
	7. 0	11 4	711 1		
75 8	Medium dense to dense, brown fine to coarse sand, trace to and fine to coarse gravel Occasional cobbles noted				
20 27 -					
25 -113 25					
30 16 - - - - - 8	d				
35 10 a	See page 2				
COMPLETION D	ертн <u>44 5</u> water depth <u>11 4 E</u>	BAR DATE A	pril 9	, 1980	

	P	lair	we1		per (1	KALAMA	200 MI	NG LAI ICHIGAN NG NO		Y	INC	8	30 A-2	2
D	ATE	A	DT1	19,	1980)				722		ATIO	on		·	<u> </u>
	Z SAMPLES	SAMPLING RESISTANCE	SYMBOL			C	DESCRI	PTION			DEPTH BELOW	SURFACE	ELEVATION		NATURAL MOISTURE CONTENT	
35		9 45	a	br	dium own i d fir	ine	to	coarse	e SAN grave	ID,	39	5	683	0		
40-	- - -	136 100	P	br tr	ace t	ine o li	to o	coarse e fine grav	e gra	ivel,	44	5	67 8	0		
45																
_	 -															
-	- - - -															
-																
-																
- - -		ETION		. /./-	5	· · ·		ER DEPT	. 1	 I 4	DATE		——— Apri	1	9 19	80

P1a	ınw	ell	WILKINS & WHEATON TESTING LABORA Paper Co Kalamazoo Michigan	ATORY	INC		30 A-2	
			LOG OF BORING NO	L 7				
DATE_		Apr	11 10, 1980 SURFACE ELEV 721 2	LOCATI	אס	·	·	·
O DEPTH FEET	SAMPLINC RESISTANCE	SYMBOL	DESCRIPTION	OEPTH BELOW SURFACE	ELEVATION		NATURAL MOISTURE CONTENT	
- 4 - 1 - 1 - 2	٠	14× 2× 4	Very loose FILL brown fine to medium SAND trace to little fine gravel Coal and cinders	4.1	717	. 2		
5 — 2 - 2 - 7 - 7		D 0	Possible tree stump		713	_		
10-		8	Medium dense, brown fine to medium SAND, and fine gravel		708			
- 8 8 15 9 - 1			Medium dense, dark brown fine to medium SAND and fine gravel Trace of Fuel Oil, Trace organic (Old river bottom)	17 (704	2		
20 -1	0	ø	Medium dense to dense, brown fine to coarse sand, and fine to coarse gravel					
25	5 9	d				•		
-	Ì	a		28 0	613	2		
30			Coarse gravel or Cobbles	32 0	689	2		
35		0	Extremely dense, brown fine to coarse SAND, trace to little fine gravel, little to some gray clay					
1 69	3			38 5	682	7	-	
COMPLE	- [38 5 WATER DEPTH 9 1 BAR	DATE	Ap	rıl	10, 1	980

Plainw	ell Paper Co LOG OF BORING NO			30 A-2
DATE Ap	ril 10, 1980 SURFACE ELEV 718 4	LOCATIO	ON	
SAMPLING RESISTANCE	DESCRIPTION	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT
- 3 - 6	Loose to medium dense FILL, brown sand and gravel, red brick, concrete cinders	5 5	712 9	
1 2 2	Soft, Dark gray to black Organic river MUCK	8 0	710 4	
10 8 6 5	Medulm dense, dark gray fine to medium SAND trace to and fine gravel Trace organic matter			
15 9	<u> </u>	16 0	701 9	
20 17	Dense to Medium dense, Brown fine to coarse SAND, and fine gravel			
25-11	D			
12 15 30—176		29 5	688 9	
30—76	Extremely dense brown fine to coarse SAND, trace to little fine gravel, little to some gray clay	34 5	683 9	
35				
COMPLETION DI	EPTH 34 5 WATER DEPTH 8 0 BAR	_ DATE	Aprıl l	.0, 1980

WILKINS & WHEATON TESTING LABORATORY INC KALAMAZOO MICHIGAN 80 A-2 Plainwell Paper Co 19 LOG OF BORING NO DATE April 10, 1980 SURFACE ELEV 719 6 LOCATION SAMPLING RESISTANCE ELEVATION SAMPLES SYMBOL DESCRIPTION Topsoil 2" FILL Sand & Gravel, Coal, Cinders 2 0 717 6 Loose to medium lense brown fine to ccarse SAND trace to and fine to coarse Occasional cobbles gravel noted 712 0 7 6 686 6 33 0 Dense, brown fine to coarse SANI, trace to little fine gravel, little to some gray clay 35 5 684 1 See page 2 COMPLETION DEPTH 40.0 WATER DEPTH 7.6 BAR DATE ADTIL 10 1980

Plainw	7e11	Paper Co	HEATON TESTING I HALAMAZOO MICHIG	AN	140	80 A-2
DATE	Apr	1 10 1980	SURFACE ELEV 719		N	
SAMPLES SAMPLING RESISTANCE	SYMBOL	D	ESCRIPTIÓN	DEPTH BELOW SURFACE	ELEVATION	NATURAL MOISTURE CONTENT
		See Page	1	35_5	684	1
- - - - - - - - - - - - - - - - - - -	8	Extremely do brown fine and fine gra	ense, to coarse SAND, avel	40 0	679	6
` 						
<u> </u>						
-						
1						

Pla	Lnwel	WILKINS & WHEATON TESTING LABORA 1 Paper Co KALAMAZOO MICHIGAN			80 A ^
		LOG OF BORRES	0		
DATE_	Aprı	1 9, 1980 SURFACE ELEV 720 9	LOCATIO	N	
1 - 🔍 .	RESISTANCE SYMBOL	DESCRIPTION	DEPTH BELOW JURFACE	ELEVATION	NATURAL MOISTURE CONTENT
	フレンソ	trace to and fine gravel	3 0	717 9	
5 – 2 2 2 4 – 5					
10. 4 6 9	-0	Loose to dense	9 4	711 5	
- - - 8 15 8	3	brown fine to coarse SAND, and fine to coarse gravel Occasional cobbles noted			
13 49	o				
20 17 16					
25 25 25 25 25 25 25 25					
30 - 85					
5	5		<u>34 0</u>	686 9	
3 5 80 5"	80	brown fine to coarse SAND trace to little fine gravel			
	į	little to some gray clay TH 39 5 WATER DEPTH 9 4 BAR	38 ()	682 9	9, 1980

i

I

ı

APPENDIX C

SOIL ANALYTICAL DATA

C 1	SOIL SCREENING CRITERIA AND SUMMARY OF
	EXCEEDANCES

- C 2 SOIL DATA SUMMARY VOC
- C 3 SOIL DATA SUMMARY SVOC AND PAH
- C 4 SOIL DATA SUMMARY METALS
- C 5 SOIL DATA SUMMARY PCB AND PETROLEUM PRODUCTS

l l
_
_
1
_
_
_
1
_
_
•
1
_
1
<u></u>
•
•
_

TABLE C 1

SOIL SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

				Michigan Act 451	Part 201 Generic Criteri	i ^m											
		Statewide	Residential	Industrial and	Groundw ter	Soil V latılızatio	Direct Contact										
		Default	Drinking W ter	Commercial	Surf ce Water	t Indoor Air	Industri land	N f	N f		Max Value			mber of Ex		•	
		Background	Protection	Drinking W ter	I terface Protection	Inhalation Criteria	Commerci III	Samples	Detects	Detect	Detect	Michig				leanup Cri	
V lattle Organic Compounds	Units		ь		a		J						ь	¢	d		f
•	mg/kg	NC	15	42	34	110000	73000	20	5	0 055	0 41 J	0	0	0	0	0	0
	mg/kg	NC	01	0.22	01	35	74	2	0	-	-	n	0	0	0	0	0
	mg/kg	NC	01	01	4	84	400	27	2	0 036	0 056	0	1	1	0	0	0
	mg/kg	NC	0.55	1.5	NC	580	760	8	0	-	-	0	0	o	0	0	0
	mg/kg	NC	16	16	ID	64	490	20	n	_	_	0	o	0	0	0	0
	mg/kg	NC	16	16	ID.	770	870	20	Ô	_	_	0	0	0	0	ō	Ô
	mg/kg	NC	0.2	0.58	07	16	1000	10	0	_	_	0	0	0	o	0	0
` , ,	mg/kg	NC	260	760	44	27000	27000	10	2	0 26	03	0	0	0	0	0	0
	mg/kg	NC	16	46	ID	ID	8000	8	2	0 031	0 081	0	0	0	0	0	0
	mg/kg	NC	16	46	NC	ID	8000	8	1	0.02	0 02	0	1	1	0	0	0
	mg/kg	NC	16	46	ID	140	280	20	0	_	_	0	0	0	0	0	0
	mg/kg	NC	01	01	09	0 99	390	20	0	_	_	0	0	0	0	0	0
	mg/kg	NC	2	2	094	220	260	20	0	_	-	0	0	0	0	0	0
	mg/kg	NC	NC	NC	NC	NC	NC	8	0	_	_	NA	NA	NA	NA	NA	NA
	mg/kg	NC	86	34	ID	950	950	20	1	0 011	0 011	0	0	0	0	0	0
2-Chloroethyl vinyl ether	mg/kg	NC	ID	ID	NC	ID	ID	2	0	-	-	0	0	0	0	0	0
Chlorof rm (Trichloromethane)	mg/kg	NC	16	16	34	38	1500	20	0	-	_	0	0	0	0	0	0
Chl romethane (Methyl Chlorid)	mg/kg	NC	5.2	22	ID	10	1100	20	0	-	-	0	0	0	0	0	0
2-Chl rotol ene	mg/kg	NC	3.3	9.3	NC	500	500	6	0	-	-	0	0	0	0	0	0
4-Chl rotoluene	mg/kg	NC	NC	NC	NC	NC	NC	6	0	-	_	NA	NA	NA	NA	NA	NA
Cymene (p-lsopropyltoluene)	mg/kg	NC	NC	NC	NC	NC	NC	8	0	-		NA	NA	NA	NA	NA	NA
	mg/kg	NC	16	16	ID	21	500	20	0	-	-	0	0	0	0	0	0
	mg/kg	NC	16	46	NC	ID	2000	8	0	-	-	0	0	0	0	0	0
	mg/kg	NC	0 01	0 01	NC	12	1.2	8	0	-	_	0	0	0	0	0	0
	mg/kg	NC	0 02	0.02	0 02	36	0 43	8	0	-		0	0	0	0	0	0
	mg/kg	NC	14	14	0.36	210	210	8	0		_	0	0	0	0	0	0
	mg/kg	NC	0 17	0 48	11	ID	170	8	0	-	-	0	0	0	0	0	0
	mg/kg	NC	17	17	0 29	100	1900	8	0	-	-	0	0	0	0	0	0
	mg/kg	NC	NC	NC	NC	NC	NC	2	0	-	-	NA	NA	NA	NA	NA	NA
	mg/kg	NC NC	95 18	270 50	110 15	1700 430	1000 890	8 10	0	-	-	0	0	0	0	0	0
	mg/kg	NC NC	01	90 01	72		420	10	0	_	_	0	0	0	0	0	0
	mg/kg	NC NC	014	014	1.3	11 0.33	570	10	0	-	_	0	0	0	0	0	0
	mg/kg	NC	14	14	1.3	41	640	20	0	_	_	0	0	0	D	0	0
	mg/kg mg/kg	NC	2	2	30	43	1400	20	0	_	-	0	0	0	0	0	0
	mg/kg	NC	NC	NC	NC NC	NC NC	NC	6	0	-	_	0	0	0	0	0	0
	mg/kg	NC	01	01	5.8	74	550	10	0	_	_	ō	0	0	Ô	0	0
	mg/kg	NC	NC	NC	NC	NC	NC	14	ő	_		NA	NA	NA	NA	NA	NA
	mg/kg	NC	NC	NC	NC	NC	NC	20	Ö	_	_	NA	NA	NA	NA	NA	NA.
• •	mg/kg	NC	NC	NC	NC	NC	NC	6	ō	_	_	NA	NA	NA	NA	NA	NA
	mg/kg	NC	NC	NC	NC	NC	NC	6	2	0 022	0 057	NA	NA	NA	NA	NA	NA
- ·	mg/kg	NC	NC	NC	NC	NC	NC	6	0		-	NA	NA	NA	NA	NA	NA
	mg/kg	NC	0.2	0.2	ID	7400	7400	2	4	0 074	0 34	0	0	0	0	0	0
	mg/kg	NC	1.5	1.5	0.36	140	140	25	0	_	-	0	0	0	0	0	0
	mg/kg	NC	26	72	0 091	350	350	6	0	-	-	0	0	0	0	0	0

CRA 56394 (2)

TABLE C.1

SOIL SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Michigan Act 451 Part 201 Generic Criteria (1) Statewide Residenti l Industrial and Groundw ter Soil V latilization Direct Contact Default Drinking W ter Surface W ter to Indoor Asr Industrial and N of No. f Mm V lue Max V lue Number of Exceedances of Commercial B ckground Prot ction Drinking W ter Interface Protection Inhalation Criteria Commerci I II Samples Detects Det et Detect Michigan Act 451 Part 201 Generi Cleanup Criteria Umts V latile Organi Comp unds on t 1800 NC NC 2500 2 Hexanone mg/kg 20 58 10 0 0 n 0 ٥ 0 0 I domethane mg/kg NC NC NC NC NC NC 2 2 003 0 069 NA NA NA NA NA NA Isopropylbenzene mg/kg NC 91 260 ID 390 390 5 01 17 0 0 0 0 0 0 NC 08 08 15 5900 5900 2 0 0 0 ٥ Methyl Tert Butyl Ether mg/kg 0 Methylen chlorid mg/kg NC 01 01 19 240 2300 20 2 049 0 0 n 0 ٥ 0 1 NC 57 170 D ID 26000 2 2 1.2 12 0 n n n 2 Methylnaphthalene mg/kg a NC ID 2700 10 4-Methyl 2 Pentanone (Methyl Isobutyl Ketone) mg/kg 36 100 2700 0 ٥ 0 a 52000 NC 35 087 2 0 038 0.092 Naphthalene mg/kg 100 470 ٥ 0 2 Phenylbutane (sec-B tylbenzene) mg/kg NC 16 46 ID ID 8000 1 0 026 0 026 0 n-Propylbenzen mg/kg NC 16 46 NC ΙĎ 8000 2 0 031 0 081 0 mg/kg NC 2.7 2.7 2.2 520 520 20 0 Styrene NC 1112 Tetrachloroethane 1.5 64 ID.X 33 440 0 0 mg/kg 8 0 NC 23 240 10 1 1,2,2 Tetrachloroethane mg/kg 017 07 16 0 0 Λ 0 NC 09 60 88 20 2 0.25 05 Tetrachloroethene mg/kg 01 01 0 ٥ 0 0 0 NC 220 Tetrahydrofuran mg/kg 19 54 2400 9500 2 10 0 0053 0 0 0 0 0 Tien mg/kg NC 16 16 2.8 250 250 25 0 0 0 0 NC NC NC NC NC NC 0 0 1.2.3-Trichl robenzene mg/kg 0 0 0 NC 4.2 4.2 1.8 1100 1100 0 0 ٥ 0 0 1,2,4-Trichl robenzene mg/kg 0 NC 460 10 0 ٥ Ω n 111 Trichloroethane 4 460 ٥ ٥ mg/kg 4 4 NC 840 20 0 01 01 24 0 0 ٥ 112-Trichloroethane mg/kg 66 Ω Trichl oethen mg/kg NC 01 01 37 500 20 0 0 0 NC 52 150 NC 560 560 20 0 52 0.52 0 Trichl rofluoromethane (CFC 11) mg/kg 1 2,3-Trichl rop opane NC 0.84 NC ID 830 mg/kg 2.4 0 NC 0 57 110 110 13 0.24 0 68 1,2,4-Trimethylbenzene mg/kg 2.1 2.1 4 0 0 NC 0 075 1,3 5-Tramethylbenzen mg/kg 18 1.8 11 94 94 13 3 016 0 ถ mg/kg NC 13 NC 1500 2400 12 1 0 012 0 012 0 0 0 ٥ 36 0 Vinyl acetat NC 20 0.04 0.3 28 34 0 n n n ٥ Vinyl chlorid mg/kg 0.04 n Ð NC NC NC 13 NA NA m&p-Xylene mg/kg NC NC NC 0 NA NA NA NA

150

150

150

150

13

5

0

0 063

11

0

0

0

0

0

0

0

0

0

0

0

mg/kg

mg/kg

NC

NC

56

56

56

56

07

07

o-Xvlene

Xylene (total)

TABLE C 1

SOIL SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

M chigan Act 451 Part 201 Generi Criteria (1) Residential Groundwater Soil V latil zation D rect Contact Statewide Industrial and Default Drinking W ter Surface Water to Indoor Asr Industrial nd N of Number of Exce dances of Commercial N of Min V lue Max V lue Background Protection Drinking W ter Interface Protection Inhalation Criteria Commercial II Samples Detects Detect Detect Michigan Act 451, Part 201 Generi Cleanup Criteria Units Sems-V latile Organic Compounds NC 300 880 44 350000 130000 39 11 0 02 0.39 Acenaphthene mg/kg 0 0 0 0 0 0 17 ID 5200 59 3000 39 0 00491 Acenaphthylene mg/kg NC 12 0 96 0 0 0 0 0 0 1000000 Anthracene mg/kg NC 41 41 D 730000 39 25 0 00082 13 n 0 ٥ 0 Benzo()anthracene mg/kg NC NLL NLL NLL NLV 80 39 27 0 0016 26 0 0 0 0 0 NC NLL NLL NLL NLV 39 30 0 0024 24 0 0 O 0 Benzo()pyrene mg/kg 1 NC NLL NLL. NLL ID 80 39 29 0.0031 19 0 o a Benzo(b)fluoranthene 0 Ω 0 mg/kg NC NLL. NLL NIJ. NLV 2000 39 27 0 018 14 n 0 O n ٥ Benzo(g.h.) perylen mg/kg NLL NLL 39 Benzo(k)fl oranthen mg/kg NC NLL NLV 800 26 0 0036 28 0 0 0 2-Chlorophenol mg/kg NC 09 2.6 044 ID 4500 0 NC 5.8 16 0.28 NLV 15000 4-Chloro-3-methylphenol mg/kg 0 0 NC NLL NLL NLL ID 8000 39 28 0 0031 1 28 Chrysene mg/kg 0 ٥ 0 NC NLL NLL NLL NLV 39 27 0 0036 Dibenz(a,h)anthracene mg/kg 8 64 0 0 0 0 0 D 17 Dibenzofuran mg/kg NC ID ID ID 0 03 043 0 0 0 0 2,4-Dichlorophenol mg/kg NC 15 4.2 0.38 NLV 1800 n 0 NC 74 20 76 NLV 36000 0 2,4-Dunethylphen I mg/kg 0 0 NC 0.33 0.58 NC NLV 1000 0 0 0 Ð 0 3,4-Dimethylphenol mg/kg Ð NC 0.83 0.83 NC NI.V 260 O Ω 0 0 0 n 0 4,6-Dinitro-2 methylphen 1 mg/kg 2,4-Dirutrophenol mg/kg NC NC NC NC NC NC NA NA NA NΑ NA NA NC 730 730 5.5 1000000 130000 39 11 0 075 1 77 0 0 0 Fl ranthen mg/kg 0 1 n 890 5.3 1000000 87000 39 12 390 0 0054 1 09 Fl oren mg/kg NC 0 ٥ 0 0 0 0 NC NLL NLL NLL NLV 80 39 12 0 015 J Indeno(1,2,3-cd)pyrene mg/kg 64 ٥ 0 0 0 0 0 1 Methylnaphthalene mg/kg NC NC NC NC NC NC 22 0 NA NA NA NA NA NA NC 57 170 ΙĎ ID 26000 34 15 0 02 74 0 0 ٥ 0 0 2 Methylnaphthalen mg/kg 2 Methylphenol NC 74 20 14 NLV 36000 4 3 0 0013 J 0 0013 0 0 0 0 0 0 mg/kg NC 35 100 087 470 52000 39 21 0 0088 76 0 0 0 2 0 N phthalene mg/kg 1.2 ID NLV 2000 2 N trophenol NC 04 0 0 0 0 0 0 0 mg/kg NC NC NC NC NC NC O NA NA NA NΑ NA NA 4-Nitrophenol mg/kg 0 022 0.022 G,X NLV 320 NC 4 Λ n 0 0 n Pentachlorophenol mg/kg n Λ 39 160 5.3 5100 5200 Phenanthrene mg/kg NC 56 30 0 007 15 Λ 0 0 3 0 Pheno! mg/kg NC 88 260 4.2 NLV 12000 4 0 0 0 0 0 0 Pyrene mg/kg NC 480 480 ID 1000000 84000 39 23 0 027 31 0 0 0 ٥ 0 0 NC 39 110 NC NLV 73000 0 0 0 0 2.4.5-Trichl rophenol mg/kg 4 24 94 0.33 NLV 3300 0 NC

2,4,6-Trichlorophenol

mg/kg

TABLE C1

SOIL SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Michigan Act 451 Part 201 Generic Criteria (1) Statewide Residential Industrial and Groundwater Soul V latritzatro Direct Contact Default Drinking Water Commercial Surface Water to Indoor Air Industrial and No. of No. of Mm V lue Max V lue Number of Exceedances of Background Protection Dranking W ter Interface Protection Inhalation Criteri Commercial II Detects Detect Detect Michigan Act 451 P rt 201 Generic Cleanup Criteria Samples Umits Petroleum Products TPH extractabl (DRO) mg/kg NC NC NC NC NC NC 25 25 37 14000 NA NA NA NA NA NA TPH (C10-C28) DRO NC NC NC NC NC NC 0 0 NA NA NA NA mg/kg NA NA NC NC TPH Non P lar Material SCT HEM NC NC NC NC 0 0 mg/kg NA NA NA NA NA NA NC NC TPH purgeable (GRO) mg/kg NC NC NC NC 25 5 3 13 NA NA NA NA NA NA NC NC NC NC NC TPH (C6-C10) GRO mg/kg NC 0 0 NA NA NA NA NA NA PCBs NLL NLL NLL 16000 36 0 029 012 Aroclor 1016 (PCB-1016) mg/kg NC 16 4 0 0 0 0 0 0 Aroclor-1221 (PCB-1221) NC NLL NLL NLL 16000 16 35 2 0.051 0 051 0 0 mg/kg 0 8 0 0 Aroclor 1232 (PCB-1232) NC NLL NLL NLL 16000 16 34 0.47 0 47 mg/kg 0 0 0 0 0 NLL NLL NLL 16000 16 Aroclor-1242 (PCB-1242) NC 34 2 0 065 0 094 0 mg/kg 0 0 0 0 0 NLL NLL NLL 16000 Arocl r-1248 (PCB-1248) mg/kg NC 16 33 0 0 0 0 0 0 0 Aroclor-1254 (PCB-1254) mg/kg NC NLL NLL NLL 16000 16 34 18 0 025 270 J 0 0 0 0 0 2 Aroclor 1260 (PCB-1260) NC NLL NLL NLL 16000 16 33 6 0 019 0 61 0 0 0 0 0 0 mg/kg NC NLL NLL NLL 16000 16 41 0.01 0 0 Total PCB 56 0 0 0 mg/kg SPLP PCB NC NC NC Aroclor-1016 (PCB-1016) mg/L NC NC NC 0 NA NA NA NA NA NA Aroclor-1221 (PCB-1221) mg/L NC NC NC NC NC NC 2 NA NA NA NA NA NA Aroclor 1232 (PCB-1232) mg/L NC NC NC NC NC NC NA NA NA NA NA NA NC NC NC NC NC Aroclor 1242 (PCB-1242) mg/L NC 2 NA NA NA NA NA NA NC NC NC Arocl r-1248 (PCB-1248) mg/L NC NÇ NC 2 0 NA NA NA NA NA NA

NC

NC

NC

NC

2

2

0

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NC

NC

mg/L

mg/L

NÇ

NC

NC

NC

NC

NC

Aroclor-1254 (PCB-1254)

Aroclor-1260 (PCB-1260)

TABLE C 1

SOIL SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL INC MILL PROPERTY PLAINWELL MICHIGAN

Michigan Act 451 Part 201 Generic Criteria (1) Residential Industrial and Groundw ter Soil V latilization Direct Contact Statewide Default Drinking Water Commerca I Surface W ter to Indoor Air Industrial and N of MinV lue MaxV lue Number of Exceedances of No. of Drinking W ter Interface Protection Inhalation Criteria Commercial II M chigan Act 451, Part 201 Generi Cleanup Criteri Background Protection Detects Detect Units Metals NLV Arsenic mg/kg G.X NLV Barrum mg/kg GΧ NLV Cadmium mg/kg 1.2 0 018 J Chromium Total mg/kg 3.3 NLV mg/kg Copper G NLV 2.8 GΧ NLV Lead mg/kg 0 13 0 020 J Mercury mg/kg NLV Selenium mg/kg 0 41 Silver mg/kg 4.5 NLV G NLV Zunc mg/kg

TABLE C1

SOIL SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Notes.

- param ter tanalyzed

NC Michigan Act 451 Part 201 Cleanup Criteria exists for this parameter

T alue repirted is less than criteria of detecti

(1) Cl an p criteri dentifi d by MDEQ RRD Op Memo N 1 updated 1/23/2006 pursuant t 1994 PA 451 as amend d

mg/kg milligrams per kilogram (parts per millio)

TPH T tal Petroleum Hydrocarbo

NA Not Applicabl

U Not present t or boy the associated alue.

J Estimated Concentrati

G Groundw ter surface water interface (CSI) criterion depends on the pH or water hardness or both, of the receiving surfac water

ID means insufficent data to dev lop criterion

NLV chemical is of likely to latilize

X The GSI enterior shown in the generic cleanup enteria tables is not protective for surface water that is used as drinking water source

SPLP synthetic precip tatio leaching procedure

D indicates data reported from diluted sample

P indic tes result taken from the highest of the two columns

M hig Act 451, Part 201 Generi Criteria

Statewide Default Background

b Residential Drinking W ter Protectio

Industrial and commercial drinking water

d Groundw ter Surface Water Interface Protection

Soil V latilization to Indoo Air Inhalatio Criteria

f Direct Contact Industrial and Commercial II

TABLE C.2

SOIL DATA SUMMARY VOCS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Sample L cation		Sample #1	Sample #2	Sample #2	Sample #2	Sample #3	Sample #4	S mple #5	SB-6	\$B-6	SBA 1A	SBA 1C/D	SBA 2A
Sample Date		06/1999	06/1999	06/1999	06/19 99	06/1999	06/1999	06/19 99	2006	2006	1997	1997	1997
Sample Depth (f et bgs)			(0.7)	(1.5)					(0-1)	(0-1)	(0-2)	(4-8)	(0-2)
Sample Type										Duplic te			
	Umts												
Acetone	mg/kg	-	-	-	-		-	-	0 4 1 J	0.31 J	0 025 U	0 025 U	0 025 U
Acryl natral	mg/kg	-	-	-		-	-	-	0 11 U	0 11 U	-	~	-
Benzene	mg/kg	0 05 U	0 05 U	0 05 U	0.12™	0 05 U	0 05 U	0 05 U	0 056	0 036 J	0 005 U	0 005 U	0 005 U
Bromobenzen	mg/kg		-	_	-	-	-	_	0 11 U	0 11 U	-	~	_
Bromodichloromethane	mg/kg	-	_	-	-	-	-	_	0 11 U	0 11 U	0 005 U	0.005 U	0.005 U
Bromoform	mg/kg	-	-		-	-	-	-	0 11 U	0 11 U	0 005 U	0 005 U	0 005 U
Bromomethane (Methyl Bromide)	mg/kg	-	-	-	_	-	-	_	0 22 U	0.22 U	-	~	_
2 Butanone (Methyl Ethyl Ketone)	mg/kg	_	_	-	_	_	~	-	03 J	0 26 J	_	~	
n-B tylbenzene	mg/kg	_	_	_	_		~	_	0 092	0 038 J	-	~	_
tert B tylbenzene	mg/kg	_	_	_		_	-	-	0 055 U	0 055 U	_	~	_
Carbon disulfid	mg/kg	-	_	_	_	_	~		027U	0.27 U	0 005 U	0 005 U	0 005 U
Carbo tetrachloride	mg/kg	-	_	_	_	_		_	0 055 U	0 055 U	0 005 U	0 005 U	0 005 U
Chl robenzene	==g/-g mag/kg	_	_	_	_	_	~	_	0 055 U	0 055 U	0 005 U	0 005 U	0 005 U
Chl bromomethane	mg/kg	_	_	_	_	_	_	_	0 11 U	011 U	-	~	-
Chl roethane	mg/kg	_	_	_	-	_	~	_	0.27 U	0.27 U	0 005 U	0 005 ປ	0 005 U
2-Chloroethyl vinyl ether	mg/kg	-		_		=	_	_	_	-	-	7 000	- U
Chloroform (Trichl romethane)		_	-	-	-	_	_	_	0 011]	0 055 U	0 005 U	0 005 U	
Chloromethane (Methyl Chlorid)	mg/kg	_	_	_	_	_	-	_	0 27 U		0 005 U		0 005 U
2-Chlorotoluene	mg/kg		-	-	-					0. 27 U		0 00 5 U	0.005 U
4-Chl rotol ene	mg/kg	-	-	-	-	-	~	-	-	-	_	~	-
	mg/kg	-	-	-	_	-	~	-		-	-	~	_
Cymene (p-Isopropyltol ene)	mg/kg	-	-	-	-	-	-	-	0 057 J	0 022 J	-	~	-
Dibromochloromethane	mg/kg		-	-	-	_	~	-	0 11 U	0 11 U	0 005 U	0 005 U	0 005 U
D brom methan	mg/kg	-	-	-	-	-	-	-	0 27 U	0.27 U	-	~	-
1,2 Dibromo-3-chl ropropane (DBCP)	mg/kg	-	-	-	_	-	~	-	0 055 U	0 055 U	-	~	-
1,2 Dibromoethane (Ethylene Dibromide)	mg/kg	-	-	-	_	-	~	-	0 0 5 5 U	0 055 U	-	~	-
1,2 Dichlorobenzen	mg/kg	-	-	-	-	-	~	-	0 11 U	0 11 U	-	~	-
1,3-Dichlorobenzen	mg/kg	-	-	-	-	-	~		0 11 U	0 11 U	-	~	-
1,4-Dichlorobenzen	mg/kg	-	-	-	-	-	-	-	0 11 U	0 11 U	-	~	-
trans-1,4-Dichloro-2-butene	mg/kg	-	-	-	-	-	~		0 055 U	0 055 U	-	~	-
Dichlorodifluoromethane (CFC 12)	mg/kg	-	-	_	-	-	~	-	0 27 U	0.27 U	-	~	-
11 Dichl roethan	mg/kg	-	_	-	-	-		-	0 055 U	0 055 U	_	~	_
1,2 Dichloroethan	mg/kg	-	-	-	-	_	~	_	0 055 U	0 055 U	-	~	_
1 1 Dichloroethen	mg/kg	-	_	_	-	_	-	-	0 055 U	0 055 U	_	~	_
cas-1,2 Dichl roethene	mg/kg		-		-	-	~		0 055 U	0 055 U	0 005 U	0 005 U	0 005 U
trans-1,2 Dichloroethene	mg/kg	_	-	-	-	_	~	-	0 055 U	0 055 U	0 005 U	0 005 U	0 005 U
1 1 Dichloropropene	mg/kg	-	-	_	-	_	-	_	_	_	_	~	_
1,2 Dichl ropropane	mg/kg	_	_	_	_		~	_	0 055 U	0 055 U	_	_	_
cis-1,2 Dichl ropropene	mg/kg	_	-	-	_	_	~	-	0 055 U	0 055 U	0 005 U	0 005 U	0 005 U
trans-1,3-Dichloropropene	mg/kg	_	_	_	_	_	-	_	0 055 U	0 055 U	0 005 U	0 005 U	0 005 U
1,3-Dichloropropane	mg/kg	_	_	-	_	_	_	-	-	_	-	~	-
cis-1,3-Dichloropropene	mg/kg	_	-	_	_	_	~	_		-	_	~	_
2,2 Dichloropropane	mg/kg	-	-	_	_		~	_	_	-	_	~	_
Ethyl Ether	mg/kg	_	<u>-</u>		_	_	-	_	0.22 U	0.22 U	-	_	-
Ethylbenzene	mg/kg	0 05 U	_	_	0.34	0 086	0 05 บ	005U	0.22 0	0.22.0	0 005 U	0.0005 U	0 005 U
Hoxachlorobutadiene		-	_	_	-	-	~	-	-	-	-	~	-
a acceptance may a Color de Salada de la Col	mg/kg	_	-	_	_	_	-	_	-	-	-	~	-

TABLE C.2

SOIL DATA SUMMARY VOCS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample L cation		Sample #1	Sample #2	Sample #2	Sample #2	Sample #3	Sample #4	Sample #5	SB-6	SB-6	SBA 1A	SBA 1C/D	SBA 2A
Sample D te		06/1999	06/1999	06/1999	06/19 99	06/1999	06/1999	06/1999	2006	2006	1997	1997	1997
Sample Depth (feet bgs)			(0.7)	(1.5)					(0-1)	(0-1)	(0-2)	(4-8)	(0-2)
Sample Type										Duplicate			
	Units												
2 Hexanone	mg/kg	-	-	-	-	-	-	-	2.7 U	2.7 U	-	-	-
I domethan	mg/kg	_	_	_	_	-	-	_	0 11 U	0 11 U	-	-	_
IsopropyIbenzene	mg/kg	-	-	-	-	_	-	-	0 0 69 J	0 03 J	_	-	-
Methyl Tert Butyl Ether	mg/kg	-	-	-	-	-	-	_	027U	0 27 U	_	-	_
Methylene chloride	mg/kg	-	-	-	_	_	_	_	0 11 U	0 11 U	0 005 U	0 005 U	0 005 U
2 Methylnaphthalene	mg/kg	-	_	_	_	-	-	-	1.2	1.2		_	_
4-Methyl 2 Pentanon (Methyl Isobutyl Ket)	mg/kg	-	-	-	-	-	-	-	2.7 U	2.7 U	-	-	_
N phthal ne	mg/kg	_	-	-	-	-	_	_	1	0 49	-	-	_
2 Phenylbutan (sec Butylbenzene)	mg/kg	_	_	_	_	_	-	-	0 026]	0 055 U	-	-	-
n-Propylbenzene	mg/kg	_	-	-	-	_	-	_	0 081 J	0 031 J	-	-	_
Styrene	mg/kg	-	-	-	_	_	-	-	0 055 U	0 055 U	0 005 U	0 005 U	0 005 U
1 1 1,2 Tetrachl roethane	mg/kg	-	_	_	-	-	-	-	0 11 U	0 11 U	_	_	
1 1 2,2 Tetrachl roethane	mg/kg	-	_		_	_	-	-	0 055 U	0 055 U	-	_	-
Tetrachloroethen	mg/kg	_	-	-	-	-	-	_	0 02 J	0 055 U	0 005 U	0 005 U	0 005 U
Tetrahydrofuran	mg/kg	_	_	_	-	-	_	_	05 J	0.25 J	-	_	
Tlen	mg/kg	0 15	_		2	0 41	01 U	01 U	0 65	0.36	0 058	0 005 U	0 067
1,2,3-Trichlorobenzene	mg/kg	_	_	_	-	_	_	_	036 U	0.36 U	_	_	-
1,2,4-Trichlorobenzen	mg/kg	-	_	_	_	_	_	_	0 36 U	0.36 U	_	_	_
1 1 1 Trichloroethane	mg/kg	-	_		_	_	_	_	0 055 U	0 055 U	_	_	_
112 Tri hi roethan	mg/kg	-	-		-	-		_	0 055 U	0 055 U	0 005 U	0 005 U	0 005 U
Trichl roethene	mg/kg	-	-	-	-	-	-	_	0 055 U	0 055 U	0 005 U	0 005 U	0 005 U
Trichlorofluoromethane (CFC 11)	mg/kg	_	_	_	_	_	_	-	0 11 U	0 11 U	0 01 U	0 01 U	0 01 U
1,2,3-Trichloropropane	mg/kg	_	_	_	_	_	-	-	0 11 U	0 11 U	-		_
1,2,4-Trimethylbenzene	mg/kg	01 U	-	_	0.68	0.27	01 U	01 U	0.54	0 24	-	_	
1,3 5-Trimethylbenzene	mg/kg	01 U	_	_	0 15	01 U	0 1 U	01 U	0 16	0 075)	_	_	-
Vinyl acetate	mg/kg	_	_	_	_	-	-	_		_	0 005 U	0 005 U	0 005 U
Vinyl hl nd	mg/kg	_	-	-	-	-	-	-	0 044 U	0 044 U	0 005 U	0 005 U	0 012
m&p-Xylene	mg/kg	01	_	_	17	0 51	01 U	01 U	0 97	0 44	-	-	_
o-Xylene	mg/kg	0 063	-	-	1.1	0.35	0 05 U	0 05 U	0 67	0.3	-		_
Xylene (total)	mg/kg	_	_	_	_	_	_	_	-	-	_	_	_

TABLE C.2

SOIL DATA SUMMARY VOCS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample Location		SBA 2D	SBA-3A	SBA 3F	SRA-4B	SBA-4C/D	SBA-5A	SBA-5F	SBG-1A/B	SBG-1C/D	TP-5	TP 17
Sample Date		199 7	1997	1997	1997	1997	1997	1997	1997	1997	11/11/2008	11/12/2008
Sample Depth (feet bgs)		(2-4)	(0-2)	(10-12)	(2-4)	(4-8)	(0-2)	(10-12)	(0-4)	(4-8)	(6)	(7)
Sample Type												
	Units											
A etone	mg/kg	0 025 U	0 025 U	0 025 U	0 025 U	0 025 U	0 025 U	0 025 U	0 025 U	0 025 U	0 19	0 033 U
Acryl nitril	mg/kg	_	-	_	_	-	-		_	_	-	-
Benzene	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
Bromobenzene	mg/kg	-	-	_	_		_	-	-	_	0 013 U	0 0082 U
Bromodi hloromethan	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
Bromoform	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
Bromomethane (Methyl Bromude)	mg/kg	-	_	_	-	_	_		0 00b U	0 005 U	0 013 U	0 0082 U
2-Butanone (Methyl Ethyl Ketone)	mg/kg	_	-	_	-	-	_	_	0 01 U	0 01 U	0 05 U	0 033 U
n-Butylbenzene	mg/kg	-	_	_	_	_	-	_	-	_	0 05 U	0 033 U
tert Butylbenzene	mg/kg	_	-	_	-	-	_	_	_	_	0 05 U	0 033 U
Carbo disulfid	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 00o U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
Carbon tetrachlorid	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
Chlorobenzene	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
Chlorobromomethane	mg/kg	_	_	-	_	_	-	-	-	-	0 013 U	0 0082 U
Chloroethane	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
2-Chl roethyl myl ether	mg/kg	_	_	_	_	-	_	_	0 01 U	0 01 U	_	_
Chlorof rm (Trichloromethane)	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0.005 U	0 005 U	0.005 U	0 005 U	0 013 U	0.0082 U
Chloromethane (Methyl Chlorid)	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
2-Chlorotoluene	mg/kg	_	-	_		_	_	_	_	_	0 05 U	0 033 U
4-Chl rotoluene	mg/kg	_	_	_		_		-	_	_	0 05 U	0 033 U
Cymene (p-Isopropyltoluene)	mg/kg	_	_	_	_	_	_	_	_	_	0 05 U	0 033 U
D'bromochloromethane	mg/kg	0 005 U	0 005 U	0 005 U	U c00 0	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0.0082 U
Dibromomethane	mg/kg	-	-	_	-	_	_		-	-	0 013 U	0 0082 U
1,2 Dibromo-3-chioropropane (DBCP)	mg/kg	_	_	_	-	_	_		_	_	0 05 U	0 033 U
1,2-Dibromoethane (Ethylene Dibromide)	mg/kg	_	_	_	-	_		_	_	_	0 05 U	0 033 U
1.2 Dichlorobenzene	mg/kg	_	_	-		_	_	_	_	_	0 013 U	0 0082 U
1,3-Dichlorobenzen	mg/kg	_	_	_	-	_	-		-		0 013 U	0 0082 U
1.4-Dichlorobenzen	mg/kg	_	-	-	-	-	_		_	-	0 013 U	0 0082 U
trans-1,4-Dichloro-2 butene	mg/kg	-	_	_	_	-	_		-	_	_	_
Dichlorodifl romethane (CFC 12)	mg/kg	_	_	_	_	_	_	_	_	_	0 013 U	0 0082 U
1 1 Dichloroethane	mg/kg	-	_	_	_	-	_	-	0 005 U	0 005 U	0 013 U	0 0082 U
1.2-Dichloroethan	mg/kg	_	_	_	-	_	_		0 005 U	0 005 U	0 013 U	0 0082 U
1 1 Dichloroethene	mg/kg	_	-	_	_		_	_	0 005 U	0 005 U	0 013 U	0 0082 U
cas-1.2 Dichloroethene	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
trans-1,2 Dichl roethene	mg/kg	0 005 U	0 005 U	0 005 U	0.005 U	0 005 ປ	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
1 1 Dichloropropene	mg/kg	_	-	-	-	_		_	_	_	0 013 U	0 0082 U
1,2 Dichloropropan	mg/kg		-	_	_		_	_	0 005 U	0 005 U	0 013 U	0 0082 U
cis-1,2 Dichl ropropene	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	_	-
trans-1,3-Di hloropropene	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
1,3-Dichl ropropan	mg/kg	_	-	_	-	_	_		-	_	0 013 U	0 0082 U
cis-1,3-Dichloropropene	mg/kg	_	_	-	_	_	_	_	_	_	0 013 U	0 0082 U
2,2 Dichi ropropane	mg/kg	_	_	-	_	_	_	_	_	_	0 013 U	0 0082 U
Ethyl Ether	mg/kg	_	-	_	_	_	_		_	_	_	_
Ethylbenzene	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
Hexachl robutad en	mg/kg	-	_	_	_	_	_		-	-	0 05 U	0 033 U
	~ 0											

TABLE C.2

SOIL DATA SUMMARY VOCS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Sample L catro		SBA 2D	SBA-3A	SBA 3F	SBA-4B	SBA-4C/D	SBA-5A	SBA-5F	SBG-1A/B	SBG-1C/D	TP 5	TP 17
Sample D te		1997	1997	1997	1997	1997	1997	19 9 7	1997	1997	11/11/2008	11/12/2008
Sample Depth (feet bgs)		(2-4)	(0-2)	(10-12)	(2-4)	(4-8)	(0-2)	(10-12)	(0-4)	(4-8)	(6)	Ø
Sample Type												
	Units											
2 Hexanone	mg/kg	-	_	-	_	-	-		0 01 U	0 01 U	0 05 U	0 033 U
lod methane	mg/kg	-	-	-	-	-	-	-	-	-	-	-
Isopropylbenzene	mg/kg	-	-	_		-	_	_	-		0 05 U	0 033 U
Methyl Tert Butyl Ether	mg/kg	-	-	-	_	-	-	-	_	-	_	-
Methylene chlond	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 025 U	0 017 U
2 Methylnaphthalene	mg/kg	-	_	-	_	-	_	-	-	-	-	-
4-Methyl 2 Pentanon (Methyl Isobutyl Keto)	mg/kg	-	-	-	-	-	_		0 01 U	0 01 U	0 05 U	0 033 U
N phthalene	mg/kg	-	-	_	_	-	_		-	-	0 05 U	0 033 U
2 Phenylbutan (sec B tylbenzen)	mg/kg	-	-	-	_	_	_	_	-	-	0 013 U	0 033 U
n-Propylbenzen	mg/kg	_	_	_	_	_	_	_	_	_	0 05 U	0 033 U
Styren	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 00o U	0 005 U	0 013 U	0 0082 U
1 1 1,2 Tetrachloroethane	mg/kg	-	-	-	-	-	-	-	-	_	0 013 U	0 0082 U
1 1,2,2 Tetrachloroethane	mg/kg	-		-	-	-	-	-	0 005 U	0 005 U	0 013 U	0.0082 U
Tetrachloroethen	mg/kg	0 005 U	0.52**	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0062 U
Tetrahydrofuran	mg/kg	-	-	_	-	-			-	_	-	-
Tlen	mg/kg	0 005 U	0.005 U	0 005 U	0 0061	0 005 U	0 009	0 005 U	0 005 U	0 0053	0 013 U	0 0062 U
1,2,3-Trichl robenzene	mg/kg	-	_	-	-	-	-		-	_	0 005 U	0 033 U
1 2,4-Trichl robenzene	mg/kg		-	-	-		-		_	_	0 05 U	0 033 U
111 Trichl roethane	mg/kg	-	-	-	_	-	-	-	0 005 U	0 005 U	0 013 U	0 0082 U
1 1 2 Trichloroethane	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
Trichl roethen	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 013 U	0 0082 U
Trichlorofi oromethane (CFC 11)	mg/kg	0 01 U	0 01 U	001 U	0 OI U	0 01 U	0 01 U	0 01 U	0 005 U	0 005 U	0 013 U	0 0082 U
1,2,3-Trichloropropane	mg/kg	-	_	-	_	-	-	-		_	0 013 U	0 0082 U
1 2,4-Trimethylbenzene	mg/kg	_	_	_	_	-	-	-	_	-	0 05 U	0 033 U
1,3 5-Trimethylbenzene	mg/kg	_	-	-	-	-	-		-	-	0 05 U	0 033 U
Vinyl acetate	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 01 U	001 U	_	-
Vmyl hl nd	mg/kg	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0.013 U	0 0082 U
m&p-Xylene	mg/kg	-	-	_	-	_	_	-	-	-	0 013 U	0 0082 U
o-Xylene	mg/kg	-	-	_	_	-	-	-	-	_	0 013 U	0 0082 U
Xylene (t tal)	mg/kg	_	-	-	-	-			0 005 U	0 005 U	-	-

TABLE C.2

SOIL DATA SUMMARY VOCS FORMER PLAINWELL INC MILL PROPERTY PLAINWELL MICHIGAN

Sample Dys	Sample L. cation		TP 18	TP-18	TP 19	TP 19	TP 20	TP 20
Semple Type War Wa	Sample D te		11/12/2008	11/12/2008	11/12/2008	11/12/2008	11/12/2008	11/12/2008
Acetome mg/kg 012 - 0037 U - 0088 U 0055 Acetyr intril mg/kg 019 U - 0092 U - 0094 U 0087 U Beruzene mg/kg 009 U - 0092 U - 0094 U 0087 U Brown beruzen mg/kg 009 U - 0092 U - 0094 U 0087 U Brown beruzen mg/kg 009 U - 0092 U - 0094 U 0087 U Brown beruzen mg/kg 009 U - 0092 U - 0094 U 0087 U Brown beruzen mg/kg 009 U - 0092 U - 0094 U 0087 U Brown beruzen mg/kg 009 U - 0092 U - 0094 U 0087 U Brown beruzen mg/kg 009 U - 0092 U - 0094 U 0087 U Brown beruzen mg/kg 009 U - 0092 U - 0094 U 0087 U Brown beruzen mg/kg 009 U - 0092 U - 0094 U 0087 U Brown beruzen mg/kg 009 U - 0092 U - 0094 U 0087 U Brown beruzen mg/kg 009 U - 0092 U - 0094 U 0087 U Carton desulid mg/kg 009 U - 0092 U - 0094 U 0087 U Carton desulid mg/kg 009 U - 0092 U - 0094 U 0087 U Carton desulid mg/kg 009 U - 0092 U - 0094 U 0087 U Carton desulid mg/kg 009 U - 0092 U - 0094 U 0087 U Carton desulid mg/kg 009 U - 0092 U - 0094 U 0087 U Carton desulid mg/kg 009 U - 0092 U - 0094 U 0087 U Carton desulid mg/kg 009 U - 0092 U - 0094 U 0087 U Carton desulid mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U 0087 U Chlorothomomethane mg/kg 009 U - 0092 U - 0094 U	Sample Depth (feet bgs)		(8)	(8)	(8)	(8)	(6)	(8.5)
Actimate	Sample Type			Duphcate		Duplicate		
Acryl mirt mg/kg		Units						
Berusene	- 	mg/kg	0 12	_	0 037 U	-	0 038 U	0 055
Brom betace	•	mg/kg	-	-	-	-	_	_
Bromodichioromethane	Benzene	mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
Brown form		mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
Bristonerthane (Methyl Bronul) mg/kg 0.009 U	Bromodichloromethane	mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
2 Batanone (Methyl Ethyl Ketone) mg/kg 0.036 U — 0.037 U — 0.038 U 0.035 U rr B tylbenzene mg/kg 0.036 U — 0.037 U — 0.038 U 0.035 U Carbon dissulfid mg/kg 0.009 U — 0.0092 U — 0.0094 U 0.0097 U Chloroberacene mg/kg 0.009 U — 0.0092 U — 0.0094 U 0.0087 U Chloroberacene mg/kg 0.009 U — 0.0092 U — 0.0094 U 0.0087 U Chloroberacene mg/kg 0.009 U — 0.0092 U — 0.0094 U 0.0087 U Chloroberacene mg/kg 0.009 U — 0.0092 U — 0.0094 U 0.0087 U Chloroberacene mg/kg 0.009 U — 0.0092 U — 0.0094 U 0.0087 U Chloroberacene mg/kg 0.009 U — 0.0092 U — 0.0094 U 0.0087 U Chloroberacene (Methyl Chlorde) mg/kg 0	Brom form	mg/kg	0 009 U	_	0 0092 U	-	0 0094 U	0 0087 U
nB tyleruzene mg/kg 0 006 U - 0037 U - 0038 U 0035 U tert 8 tylberuzene mg/kg 0 006 U - 0037 U - 0037 U - 0038 U 0035 U 1 cert 8 tylberuzene mg/kg 0 009 U - 00992 U - 00994 U 00087 U 1 00087 U 1 00097 U 1 0 00097 U 1 0 000	` , ,	mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
tert B tylbenzene mg/kg 0 006 U - 0037 U - 0038 U 0036 U 0057 U Carbon dasulid mg/kg 0 009 U - 00092 U - 00094 U 00087 U Carbo testachlornd mg/kg 0 009 U - 00092 U - 00094 U 00087 U Chloroberagene mg/kg 0 009 U - 00092 U - 00094 U 00087 U Chloroberagene mg/kg 0 009 U - 00092 U - 00094 U 00087 U Chloroberagene mg/kg 0 009 U - 00092 U - 00094 U 00087 U Chloroberagene mg/kg 0 009 U - 00092 U - 00094 U 00087 U Chloroberagene mg/kg 0 009 U - 00092 U - 00094 U 00087 U Chloroberagene mg/kg 0 009 U - 00092 U - 00094 U 00087 U Chloroberagene mg/kg 0 009 U - 00092 U - 00094 U 00087 U Chloroberagene mg/kg 0 009 U - 00092 U - 00094 U 00087 U 00087 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U 00087 U 00094 U			0 036 U	-	0 037 U	-	0 038 U	0 035 U
Carbon disulfied		mg/kg	0 036 U	-	0 037 U	-	0 038 U	0 035 U
Carbo tetrachlorid mg/kg 0009 U - 00092 U - 00092 U - 00094 U 00087 U Chlorobrenzene mg/kg 0009 U - 00092 U - 00092 U - 00094 U 00087 U 00087 U Chlorobronnethane mg/kg 0009 U - 00092 U - 00092 U - 00092 U - 00094 U 00087 U 00087 U Chlorobthane mg/kg 0009 U - 00092 U - 00092 U - 00092 U - 00094 U 00087 U 00087 U 00097 U - 00092 U - 00094 U 00087 U 00097 U - 00092 U - 00094 U 00087 U 00097 U - 00092 U - 00094 U 00087 U 00097 U - 00092 U - 00094 U 00087 U 00097 U - 00092 U - 00094 U 00087 U 00097 U - 00094 U 00087 U 00097 U - 00094 U 00087 U 00097 U - 00094 U 00087 U 00097 U - 00094 U 00087 U 00097 U - 00094 U 00087 U 00097 U - 00094 U 00087 U 00097 U - 00097 U - 00098 U 00097 U - 00097 U - 00098 U 00097 U - 00097 U - 00098 U 00097 U - 00097 U - 00097 U - 00098 U 00097 U - 00097 U - 00097 U - 00098 U 00097 U - 00097 U 00097 U - 00098 U 00097 U - 00097 U - 00098 U 00097 U - 00097 U 00097	•	mg/kg	0 036 U	-	0 037 U	-	0 038 LI	0 035 U
Chlorobenzene		mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
Chlorobrotename				-	0 0092 U		0 0094 U	0 0087 U
Chloroethane		mg/kg	0 009 U	-	0 0092 U	_	0 0094 U	0 0087 U
Chil roethyl vunyl ether		• •	0 009 U	-	0 0092 U		0 0094 U	0 0087 U
Chloroform (Truchloromethane)	Chloroethane	mg/kg	0 009 U	_	0 0092 U		0 0094 U	0 0087 U
Chloromethane (Methyl Chloride)	2-Chl roethyl vinyl ether	mg/kg	_	_	-	-	_	-
2-ChI rotoluene mg/kg 0 036 U - 0 037 U - 0 038 U 0 035 U 4-Chiorotoluene mg/kg 0 036 U - 0 037 U - 0 038 U 0 035 U Cymene (p-Isopropyltal en) mg/kg 0 036 U - 0 037 U - 0 038 U 0 035 U Dibromochloromethane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,2 Dibromo-3-chioropropane (DBCP) mg/kg 0 036 U - 0 037 U - 0 038 U 0 038 U 1,2-Dibromo-bance (Ethylene Dibromid) mg/kg 0 036 U - 0 037 U - 0 038 U 0 038 U 1,2-Dibromo-bance (Ethylene Dibromid) mg/kg 0 039 U - 0 037 U - 0 038 U 0 038 U 1,2-Dibriorobenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,4-Di hlorobenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0097 U 1,4-Di	Chloroform (Trichloromethane)	mg/kg	0 009 U	_	0 0092 U	-	0 0094 U	0 0087 U
Chilorotoliume	, , ,	mg/kg	U 900.0	-	0 0092 U	-	0 0094 U	0 0087 U
Cymene (p-Isopropyltal en) mg/kg 0 036 U - 0 037 U - 0 038 U 0 035 U Dibromochloromethane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U Dibromomethane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U Dibromomethane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dibromochane (Ethylene Dibromid) mg/kg 0 036 U - 0 037 U - 0 038 U 0 035 U 1.2 Dichlorobenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.3 Dichlorobenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.3 Dichlorobenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.4 Dichlorochane (CFC 12) mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorochan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.1 Dichlorochan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorochan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorochan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorochan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorochan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 0 0087 U 0 0087 U 0 0087 U 0 0087 U 0 0087 U 0 0087 U 0 0091 U 0 0087 U 0 0087 U 0 0087 U 0 0087 U 0 0087 U 0 0087 U 0 0091 U 0 0087 U 0 0087 U 0 0087 U 0 0091 U 0 0087 U 0 0091 U 0 0091 U 0 0087 U 0 0091 U 0 00	2-Chl rotoluene	mg/kg	0 036 U	-	0 037 U	-	0 038 U	0 035 U
Dibromochioromethane mg/kg 0.009 U - 0.0092 U - 0.0094 U 0.0087 U Dibromomethane mg/kg 0.009 U - 0.0092 U - 0.0094 U 0.0087 U 1,2 Dibromo-3-chloropropane (DBCP) mg/kg 0.036 U - 0.037 U - 0.038 U 0.035 U 1,2 Dibromoethane (Ethylene Dibromid) mg/kg 0.009 U - 0.0092 U - 0.0094 U 0.0087 U 1,2 Dichlorobenzene mg/kg 0.009 U - 0.0092 U - 0.0094 U 0.0087 U 1,4-Di hlorobenzen mg/kg 0.009 U - 0.0092 U - 0.0094 U 0.0087 U 1,4-Di hlorobenzen mg/kg 0.009 U - 0.0092 U - 0.0094 U 0.0087 U 1,4-Di hlorobenzen mg/kg 0.009 U - 0.0092 U - 0.0094 U 0.0087 U 1,4-Di hlorobenzen mg/kg 0.009 U - 0.0092 U - 0.0094 U 0.0087 U 1,1 Dichlorobenzen </td <td>4-Chlorotoluene</td> <td>mg/kg</td> <td>0 036 U</td> <td>-</td> <td>0 037 U</td> <td></td> <td>0 038 U</td> <td>0 035 U</td>	4-Chlorotoluene	mg/kg	0 036 U	-	0 037 U		0 038 U	0 035 U
Dibromomethane		mg/kg	0 036 U	-	0 037 U	-	0 038 U	0 035 U
1,2 Dibromo-3-chloropropane (DBCP) mg/kg 0 036 U - 0 037 U - 0 038 U 0 035 U 1,2-Dibromoethane (Ethylene Dibromid) mg/kg 0 036 U - 0 037 U - 0 038 U 0 038 U 1,2-Dibromoethane (Ethylene Dibromid) mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,3-Dichlorobenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,4-Dichlorobenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,4-Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1 1 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.1 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.1 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.3 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.3 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.3 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 0.2 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 0.3 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 0.3 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 0.3 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 0.3 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 0.3 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 0.3 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0092 U - 0 0094 U 0 0087 U 0.3 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0092 U - 0 0094 U 0 0087 U 0.3 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0092 U - 0 0094 U 0 0087 U 0.3 Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0092 U - 0 0094 U 0 0087 U 0.3 Dichloro-2 butene	Dibromochloromethane	mg/kg	0 00 9 U	-	0 0092 U	_	0 0094 U	0 0087 U
1,2-Dibromoethane (Ethylene Dibromid) mg/kg 0 036 U - 0 037 U - 0 038 U 0 035 U 1,2 Dichlorobenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,3-Dichlorobenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,4-Di hlorobenzen mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,4-Di hlorobenzen mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1	Dibromomethane	mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
1,2 Dichlorobenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,3-Dichlorobenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,4-Dichloro-Denzen mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U trans-1,4-Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U Dichlorodifluoromethane (CFC 12) mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1 1 Dichloroethan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1 1 Dichloroethene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cus-1,2 Dichloroethene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U trans-1,2 Dichloroethene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,2 Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U		mg/kg	0 036 U	-	0 037 U	-	0 038 U	0 035 U
1,3-Dichlorobenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 14-Di hlorobenzen mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 14-Di hloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 15-Dichloro-2 butene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorothan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorothan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.3 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.3 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cs-1,2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cs-1,2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cs-1,2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cs-1,3 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,3 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2.2 Dichlorothene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2.2 Dichlorothene	, ,		0 036 U	-	0 037 U		0 038 U	0 035 U
1,4-Dichloro-posense	-,- ··	mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
trans-1.4-Dichloro-2 butene mg/kg - 00092 U - 00094 U 00087 U - 00092 U - 00094 U 00087 U - 00092 U - 00094 U 00087 U - 00092 U - 00094 U 00087 U - 00092 U - 00094 U 00087 U - 00092 U - 00094 U 00087 U - 00092 U - 00094 U 00087 U - 00092 U - 00094 U 00087 U - 00092 U - 00094 U 00087 U - 00092 U - 00094 U 00087 U - - - - - - - - - - -				-		-		
Dischlorodifiluoromethane (CFC 12) mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0098 U 1.1 Dischloroethan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dischloroethan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.1 Dischloroethene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U trans-1.2 Dischloroethene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.1 Dischloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dischloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cis-1.2 Dischloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cis-1.3-Dischloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,3-Dischlor			0 009 U	-	0 0092 U	-	0 0094 U	0 008 7 U
11 Dichloroethan mg/kg 0 009 U - 0 0092 U - 0.0094 U 0 0087 U 1,2 Dichl roethan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1 D chl roethene mg/kg 0.009 U - 0 0092 U - 0 0094 U 0 0087 U cus-1,2 Dichloroethene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 11 Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,2 Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,2 Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cus-1,2 Dichl ropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U tana-1,3-Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,3-Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U				-		-		
1.2 Dr.hl roethan mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1 1 D chl roethene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cis-1,2 Dichloroethene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1 1 Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,2 Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cis-1,2 Dichl ropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U trans-1,3-Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,3-Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2s-1,3-Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2s-2 Dichloropropane	, ,			-		-		
11 D chl roethene mg/kg 0.009 U − 0.0092 U − 0.0094 U 0.0087 U cus-1,2 Dr.chloroethene mg/kg 0.009 U − 0.0092 U − 0.0094 U 0.0087 U trans-1,2 Dr.chloroethene mg/kg 0.009 U − 0.0092 U − 0.0094 U 0.0087 U 1.0 Dr.chloropropene mg/kg 0.009 U − 0.0092 U − 0.0094 U 0.0087 U 1.2 Dr.chloropropene mg/kg 0.009 U − 0.0092 U − 0.0094 U 0.0087 U cus-1,2 Dr.chl ropropene mg/kg 0.009 U − 0.0092 U − 0.0094 U 0.0087 U cus-1,3-Dr.chloropropene mg/kg 0.009 U − 0.0092 U − 0.0094 U 0.0087 U 1,3-Dr.chloropropene mg/kg 0.009 U − 0.0092 U − 0.0094 U 0.0087 U 1,3-Dr.chloropropene mg/kg 0.009 U − 0.0092 U − 0.0094 U 0.0087 U cus-1,3-Dr.chloropropene mg/kg 0.009 U − 0.0092 U − 0.0094 U 0.0087 U 0.0087 U 0.0087 U 0.0087 U 0.0087 U 0.0092 U − 0.0094 U 0.0087 U 0.0087 U 0.0091 U 0.0087 U 0.0087 U 0.0091 U 0.0087 U 0.0087 U 0.0091 U 0.0087 U 0.0091 U 0.0087 U 0.0091 U 0.0087 U 0.0091 U 0.0087 U 0.0091 U 0.0087 U 0.0091 U 0.0087 U 0.0091 U 0.0087 U 0.0091 U 0.0087 U 0.0087 U 0.0091 U 0.0087 U 0.0087 U 0.0091 U 0.0087				_		-		
Cis-1,2 Dichloroethene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1 Dichloroethene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.2 Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 0 0087 U 0 0087 U 0 0087 U 0 0087 U 0 0087 U 0 0087 U 0 0094 U 0 0087 U 0 0087 U 0 0094 U 0 0087 U 0 0094 U 0 0087 U 0 0087 U 0 0094 U 0 0087 U 0 0094 U 0 0087 U 0 0097 U 0 00				-		-		
trans-1,2 Dichloroethene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1.1 Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,2 Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cs-1,2 Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,3-Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,3-Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cs-1,3-Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2,2 Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U Ethyl Ether mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0098 U		• •		-		_		
11 Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,2 Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cs=1,2 Dichl ropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,3-Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2-2 Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2,2 Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U Ethyl Ether mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U						-		
1,2 Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cis-1,2 Dichl ropropene mg/kg - - - - - - - trans-1,3-Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 1,3-Dichloropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2,2 Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2,2 Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U Ethyl Ether mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U Ethylbenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U						_		
cis-1,2 Dichl ropropene mg/kg -<				-		-		
trans-1,3-Dichloropropene mg/kg 0 009 U 0 0092 U 0 0094 U 0 0098 U 1,3-Dichloropropane mg/kg 0 009 U 0 0092 U 0 0094 U 0 0097 U cis-1,3-Dichl ropropene mg/kg 0 009 U 0 0092 U 0 0094 U 0 0087 U 2,2 Dichloropropane mg/kg 0 009 U 0 0092 U 0 0094 U 0 0087 U Ethyl Ether mg/kg Ethylbenzene mg/kg 0 009 U 0 0092 U 0 0094 U 0 0087 U			0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
1,3-Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U cis-1,3-Dichl ropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U 2,2 Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U Ethyl Ether mg/kg - - - - - - - - Ethylbenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U	• •					-		-
cs-1,3-Dichl ropropene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0098 U 2,2 Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0098 U Ethyl Ether mg/kg - - - - - - - Ethylbenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0098 U 0 0097 U								
2,2 Dichloropropane mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U Ethyl Ether mg/kg - - - - - - - Ethylbenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0098 U	• •							
Ethyl Ether mg/kg - - - - - - Ethylbenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U	• •			-				
Ethylbenzene mg/kg 0 009 U - 0 0092 U - 0 0094 U 0 0087 U				-			0 0094 U	0 0087 U
,	•			-		-	_	
riexacni robutadiene mg/kg 0136 U – 0137 U – 0138 U 0135 U	•			-		-		
	riexacni robutadiene	mg/kg	0 036 U	_	0 037 U		0 038 U	0 035 U

TABLE C.2

SOIL DATA SUMMARY VOCS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Sample L cation		TP 18	TP 18	TP 19	TP 19	TP 20	TP 20
Sample D te		11/12/2008	11/12/2008	11/12/2008	11/12/2008	11/12/2008	11/12/2008
Sample Depth (feet bgs)		(8)	(8)	(8)	(8)	(6)	(8.5)
Sample Type			Duplicate		Duplicate		
	Units						
2 Hexanone	mg/kg	0 036 U	-	0 037 U	-	0 038 U	0 035 U
I domethan	mg/kg	-	_	-	-	_	_
Isopropylbenzene	mg/kg	0 036 U	_	0 037 U	-	0 038 U	0 035 U
Methyl Tert B tyl Ether	mg/kg	-	-	_	-	_	-
Methylene chlond	mg/kg	0.018 U	-	0 019 U	-	0 019 U	0 018 U
2 Methylnaphthalene	mg/kg	_	-	-	-	_	-
4-Methyl 2 Pentanon (Methyl Isobutyl Ketone)	mg/kg	0 036 U	_	0 037 U	-	0 038 U	0 035 U
N phthal ne	mg/kg	0 036 U	_	0.037 U	-	0 038 U	0 035 U
2 Phenylbutan (sec Butylbenzene)	mg/kg	0 036 U	-	0 037 U	-	0 038 U	0 035 U
Propylbenzen	mg/kg	0 036 U	_	0 037 U	-	0 038 U	0 035 U
Styren	mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
1112T trachloroethane	mg/kg	0 009 U	_	0 0092 U	-	0 0094 U	0 0087 U
1 1 2,2 Tetrachloroethan	mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
Tetrachl roethen	mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
Tetrahydrofuran	mg/kg	-	-	-	-	-	_
Tlen	mg/kg	0.009 U	-	0 0092 U	-	0 0094 U	0 0087 U
1,2,3-Trichlorobenzene	mg/kg	0 036 U	-	0 037 U	-	0 038 U	0 035 U
1,2,4-Trichlorobenzene	mg/kg	0.036 U	-	0 037 U	-	0 038 U	0 035 U
1 1 1 Trichloroethane	mg/kg	0 009 U	-	0 0092 U	_	0 0094 U	0 0087 U
1 1 2 Trichloroethane	mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
Trichl roethen	mg/kg	0 009 U	_	0 0092 U	_	0 0094 U	0 0087 U
Trichl rofl oromethane (CFC 11)	mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
1,2,3-Trichl ropropane	mg/kg	0 009 U	_	0 0092 U	_	0 0094 U	0 0087 U
1,2,4-Trimethylbenzene	mg/kg	0 036 U	-	0 037 U	-	0 038 U	0 035 U
1,3,5-Trumethylbenzen	mg/kg	0 036 U	_	0 037 U	_	0 038 U	0 035 U
Vinyl cetate	mg/kg	_	_	_	_	-	_
Vmyl chlond	mg/kg	0 009 U		0 0092 U	_	0 0094 U	0 0087 U
m&p-Xylen	mg/kg	0 009 U	-	0 0092 U	-	0 0094 U	0 0087 U
o-Xyl ne	mg/kg	0 009 U	-	0 0092 U	-	0.0094 U	0 0087 U
Xyl (total)	mg/kg	-	-	-	-	-	_

SOIL DATA SUMMARY SVOCS AND PAHS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample L cation Sample Date		CTP-4 12/11/2008 (4)	DG1 1997 (0-1.5)	DG2 1997 (0-1.5)	DG3 1997 (0-1.5)	DG4 1997 (0-1.5)	DG5 1 99 7 (0-1.5)	Sample #1 06/1999	Sample #2 06/1999	Sample #3 06/1999	Sample #4 06/1999	Sample 0 5 06/1999	SB-5 1997 (2.5-3.5)	SB-6 2006 (0-1)	SB-7 1997 (0-0.5)
Sample Depth (feet bgs) Sample Type	Units	(4)	(G-1.3)	(0-1.5)	(0-1.3)	(0-1.3)	(0-1-3)						(2.3-3.3)	(U-1)	(0-0.5)
эштрие 1 уре	ums														
Acenaphthene	mg/kg	0.38	0 11 U	0 11 U	11 U	12 U	0 11 U	0.33 U	1 U	1 U	0.33 U	0.33 U	04 U	0 012]	0 033 J
Acenaphthylene	mg/kg	0 17	0 21 U	0 21 U	22 U	24 U	0 21 U	0.33 U	1 U	1 U	0.33 U	0.33 U	0 0049 J	0 14 J	016]
Anthracen	mg/kg	0 96	0.0043	0 0042	0 056 U	0 06 U	0 0043	0.33 U	1 U	1 U	0.33 U	0 33 U	0 015 J	0 094 J	0.2 J
Benzo()anthracene	mg/kg	26	0 0095	0 02	3.8	0 47	0 013	0.33 U	1 U	1 U	0.33 U	0 33 U	0 037 J	0.54	0 56 J
Benzo()pyrene	mg/kg	24	0 013	0 03	49	0.58	0 02	0.33 U	13	1.3	0 74	0.33 U	0 021 J	0.3 J	0 35 J
Benzo(b)fl oranthene	mg/kg	19	0 013	0 042	3.5	0 48	0 034	0.33 U	13	1 U	0 33 U	0.59	0 032 J	0 63 J	0.84
Benzo(g.h.,)perylene	mg/kg	14	0 055	0 059	76	6.2	0 06	0 33 U	1 U	1 U	0 33 U	0 33 U	0 02 J	0.29 J	0 23 J
Benzo(k)fluoranthene	mg/kg	2.8	0 0056	0 015	2	0.22	0 0095	0 33 U	1 U	1 U	0 33 U	0 33 U	0 O1 J	0 18 J	0 23 J
2-Chlorophenol	mg/kg	-	-	_	-	-	_	-	_	_	_	_	0 4 U		0 73 U
4-Chloro-3-methylphenol	mg/kg		_	-	-	-	-	_	-	_	_	-	0 34 U	-	0 62 U
Chrysene	mg/kg	28	0 017	0 019	81	55	0 016	0.33 U	2.2	1 U	0 5 9	0.33 U	0 031 J	0 31 J	0 42 J
Dibenz(a,h)anthrac ne	mg/kg	49	0 0056	0 0045	09	64	0 0052	0 33 U	1 U	1 U	0 33 U	0 33 U	0 0057 J	0 075 J	0 071 J
Dibenzofuran	mg/kg	-	-	-			-	_		_	_	-	-	-	
2,4-Dichlorophenol	mg/kg	_	-	-	-	-	-	-	_	-	-	_	0 4 U	_	073 U
2,4-D methylphenol	mg/kg	-	_	-	_	_	_	-		-	-	-	0 4 U	_	0 73 U
3,4-Dimethylphenol	mg/kg	-	-	_	-	-	_	-	-	_	-	_	0 4 U	_	073U
4,6-Dinstro-2 methylphenol	mg/kg	_	-	-	_	-	-	_	_	_	-	_	1 U	-	18U
2,4-Dirutrophen 1	mg/kg	-	_		-	-	_	-		-	_	-	1 U	_	18U
Fluo anthene	mg/kg	49	0 053 U	0 053 U	5 6 U	6 U	0 053 U	0.33 U	1 U	1 U	11	15	0 075 J	0 92 J	14
Fl rene	mg/kg	09	0 0053 U	0 0053 U	0 56 U	0 6 U	0 0053 U	0 33 U	1 U	1 U	0 33 U	0 33 U	0 0054 J	0 021 J	0 043 J
Indeno(1,2,3-cd)pyrene	mg/kg	64	0 021 U	0 021 U	2.2 U	2.4 U	0 021 U	0.33 U	1 U	1 U	0.33 U	0.33 U	0 015 J	0 27 J	0 16 J
1 Methylnaphthalene	mg/kg	55	0 053 U	0 053 U	56U	6 U	0 053 U	-	-	-	-	-	-	-	_
2 Methylnaphthalene	mg/kg	-	0 053 U	0 053 U	5 6 U	6 U	0 053 U	-	_	_	-	-	0 11 J	0 35]	09
2-Methylphenol	mg/kg	_	-	-	_	_	_	-	-	-	-	-	0 0013 J	-	073 U
N phthalene	mg/kg	0 70	0 017	0 026	0 56 U	06 U	0 0088	0.33 U	76	2.3	0.33 U	0.33 U	0 062 J	023	0 49 J
2-Nutrophenol	mg/kg	-	_	_	-	-	-	-		-	-	-	0 4 U	-	073 U
4-N trophen 1	mg/kg	-	-	-	-	-	-	_	_	_	_	_	1 U	-	18 U
Pentachlorophenol	mg/kg	-	-	_	-	-	-	_	-	-	-	_	0 024 U	-	0 045 U
Phenanthrene	mg/kg	6.1	0 024	0 038	36	06U	0 028	0.33 U	5.6	2.5	0 36	0 57	0 098 J	0 36 J	0 75
Phenol	mg/kg	_	-	-	_	_	-	_	-	-	-	-	0 4 U		073 U
Pyrene	mg/kg	31	0 021 U	0.035	6	2.4 U	0 027	0.33 U	17	11	0 67	0 33 U	0 064 J	0 83	1.2
2,4,5-Trichlorophenol	mg/kg	-	-	-	-	_	_	-	-	-	-	-	0 4 U	-	0 <i>7</i> 3 U
2,4,6-Trichlorophenol	mg/kg	-	_	-	-	_	-	_	_	_	_	_	0 4 U	_	073 U

SOIL DATA SUMMARY SVOCS AND PAHS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Sample L cation		SB-7	SB-7	SBA 1A	SBA 1C/D	SBA 2A	SBA-2D	SBA 3A	SBA 3F	SBA-4B	SBA-4C/D	SBA-5A	SBA 5F	5BG-1A/B	SBG-1C/D
Sample D te		1997	1997	1997	1997	1997	1997	1997	1997	1997	199 7	1997	1997	1997	1997
Sample Depth (feet bgs)		(0-0.5)	(7 7.5)	(0-2)	(4-8)	(0-2)	(2-4)	(0-2)	(10-12)	(2-4)	(4–8)	(0-2)	(10-12)	(0 -4)	(4-8)
Sample Typ	Units	Duplicate													
Acenaphthene	mg/kg	0 031 J	0 08 J	11 U	0 11 U	11 U	0 11 U	2.2 U	01 U	11 U	01 U	13 U	0 12 U	2.2 U	0 11 U
Acenaphthylene	mg/kg	017 J	0 018 J	22 U	0.21 U	22 U	0.21 U	44 U	0 21 U	22.U	0 21 U	26 U	0 24 U	4 4 U	0.22 U
Anthracen	mg/kg	0.2 J	0. 2 5 J	0.29	0 00053 U	1.3	0 00053 U	0 056	0 00052 U	0 074	0 0019	0 13	0 0006 U	0 052	0 00082
Benzo()anthracen	mg/kg	0 44 J	0 49 J	0.73	0 00053 U	11	0.00053 U	0 081	0 00052 U	0 17	0 0083	0 52	0 0006 U	0.23	0 0016
Benzo()pyrene	mg/kg	0.34 J	0. 24 J	09	0 00024 U	4.8	0.00024 U	0 088	0 00024 U	0.27	0 01	0 87	0 00028 U	03	0 0024
Benzo(b)fluoranthene	mg/kg	0 78	0.36 J	19	0 0011 U	46	0 0011 U	0 11	0 001 U	06	0 0093	1.3	0 0012 U	0.24	0 0031
Benzo(g.h.)perylene	mg/kg	0.22 J	0.0 96 J	0 94	0 0021 U	43	0 0021 U	04	0 0021 U	19	0 018	2.6	0 0024 U	0.59	0 0022 U
Benzo(k)fluoranthene	mg/kg	0.23 J	016 J	0 61	0 00053 U	2.8	0 00053 U	0 036	0 00052 U	0 21	0 005	0 56	0 0006 U	014	0 00055 U
2-Chl rophenol	mg/kg	0.74 U	0.72 U	_	_	_	-	-	-	-	_	-	_		-
4-Chloro-3-methylphen l	mg/kg	0 74 U	0 61 U	-	-	_	-	-	-	_	_	-	-	-	_
Chrysene	mg/kg	0 46 J	0 43 J	12	0 0021 U	24	0 0021 U	0 098	0 0021 U	0 22 U	0 016	2.5	0.0024 U	0 48	0 0031
Dibenz(a,h)anthracene	mg/kg	0 076 J	0 0086 J	0 98	0 0011 U	4.4	0 0011 U	0 42	0 001 U	0.56	0 0093	048	0 0012 U	0 073	0 0036
Dibenzofuran	mg/kg	-	-	_	_	_	_	_	-	-	-	-	-	-	-
2,4-Dichl rophen I	mg/kg	0 74 U	072 U	-	_	_	-	_	-		-	_	-	-	_
2,4-D methylphen 1	mg/kg	0 74 U	072 U	-	-	_	-	-	-		_	_	-	-	-
34-D methylphen I	mg/kg	074 U	072 U	-	-	-	-	-	-	_	-	-	_		_
4 6-Dinitro-2 methylphenol	mg/kg	19U	1.8 U	-	-	-	-	_	-	_	-		-	-	-
2,4-Dirutrophenol	mg/kg	19 U	1.8 U	-	-	_	-	-	-		-	_	_	-	_
Fl ranthen	mg/kg	14	14	5.5 U	0 053 U	56 U	0 053 U	11 U	0 052 U	55 U	0 052 U	65 U	0 06 U	11 U	0 055 U
Fluorene	mg/kg	0 041)	0 085 J	0 55 U	0 0053 U	0 56 U	0 0053 U	011 U	0 0052 U	0.55 U	0 0052 U	0 65 U	0 006 U	0 11 U	0 0055 U
Inden (12,3-cd)pyren	mg/kg	017 J	0 0 94 J	2.2 U	0 021 U	2.2 U	0 021 U	0.44 U	0 021 U	2.2 U	0 021 U	26 U	0 024 U	0 44 U	0 022 U
1 Methylnaphthalene	mg/kg	-	-	55 U	0 053 U	56 U	0 053 U	11 U	0 052 U	55 U	0 052 U	65 U	0 06 U	11U	0 055 U
2 Methylnaphthalene	mg/kg	072 J	0 071 J	5.5 U	0 053 U	74	0 053 U	11 U	0 052 U	55 U	0 052 U	65 U	0 06 U	11 U	0 055 U
2 Methylphen 1	mg/kg	0 74 U	072U	-	-	-	-	-	-	-	-		-	-	-
N phthalene	mg/kg	0.36 J	0 057 J	0 55 U	0 0053 U	0.56 U	0 0053 U	0.32	0 0052 U	06	0 0052 U	072	0 006 U	0 11 U	0 005 U
2 N trophenol	mg/kg	0 74 U	072U	-	-	-	-	-	-	-	-	_	_		_
4-N trophenol	mg/kg	19U	1.8 U	-	_	_	_	_	_	-		-	-	-	-
Pentachl rophenol	mg/kg	0 045 U	0 044 U	-	_	-	-	_	-	_	-	-	_	-	
Phenanthrene	mg/kg	07]	1	2.3	0 0053 U	15	0 0053 U	0.5	0 0052 U	0 92	0 007	15	0 006 U	0 37	0 0095
Phenol	mg/kg	0 74 U	072 U		-	-	-	-	-	-	-	_	-		_
Pyrene	mg/kg	15	13	2.2 U	0 021 U	16	0 021 U	0 44 U	0 021 U	2.2 U	0 021 U	2.6 U	0 024 U	0.5	0 022 U
2,4,5-Trichl rophenol	mg/kg	074 U	072 U	-	-	-	-	-	-		-	-	-	-	-
2,4,6-Trichlorophenol	mg/kg	074 U	0 72 U	-	-	-	-	-	-	-	-	-	-	-	-

TABLE C.3 Page 3 of 3

SOIL DATA SUMMARY SVOCS AND PAHS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample L tron S mple Date Sample Depth (feet bgs)		SCSB-1 1997 (0-2)	SCSB 2A 1997 (0-2)	SCSB-3 1997 (0-2)	SCSB-4 1997 (0-2)	SCSB-5 1997 (0-2)	TP-5 11/11/2008 (6)	TP 17 11 /12/2008 (7)	TP 18 11/12/2008 (8)	TP 18 11/12/2008 (8)	TP 19 11/12/2008 (8)	TP 19 11/12/2008 (8)	TP 20 11/12/2008 (6)	TP 20 1 1/12/2008 (8.5)
Sample Type	Units									Duplic te		Duplicate		
Acenaphthene	mg/kg	0 11 U	0 12 U	0 11 U	0 11 U	0 11 U	0 12	0 28	0 18	-	0 06	0 06	0 02	0.39
Acenaphthylene	mg/kg	0.21 U	0.24 U	0 22 U	0 21 U	0 22 U	0.32	0 19	0 42	_	0 04	0 05	0 16	0 04
Anthracen	mg/kg	0 00053 U	0 0091	0 0011	0 00053 U	0 00056 U	0 45	0 29	0.77	-	0 22	0.24	0 09	0 34
Benzo()anthracene	mg/kg	0 00053 U	0.028	0 0063	0 00053 U	0 00056 U	2.30	1 40	3.20	_	0.56	0 74	0 62	0 47
Benzo()pyrene	mg/kg	0 00024 U	0 033	0.009	0 00024 U	0 00026 U	2.40	1 40	3 10	_	0 55	0 68	0.52	0.36
Benzo(b)fl anthene	mg/kg	0 0011 U	0 036	0 0097	0 0011 U	0 0011 U	3 20	1 80	4 30	_	0 68	072	1 90	0.52
Benzo(g.h.) perylen	mg/kg	0 0021 U	0 08	0 035	0 0021 U	0 0022 U	1 30	0 82	1 60		0 33	0.33	0 42	0.21
Benzo(k)fluoranthene	mg/kg	0 00053 U	0 011	0 0036	0 00053 U	0 00056 U	1 20	0 <i>7</i> 5	1 30	_	0.21	0 31	0 47	0 22
2-Chlorophenol	mg/kg	-		-	-	-	-	_	-	-	-	-	-	-
4-Chloro-3-methylphen 1	mg/kg	-	_	-	-	-	-	-	-	_	_	-	-	-
Chrysene	mg/kg	0 0021 U	0 099	0 038	0 0021 U	0 0022 U	2.20	1.50	3 80		0 48	0 58	1 40	0.53
Dibenz(a,h)anthracene	mg/kg	0 0011 U	0 028	0 0011 U	0 0011 U	0 0011 U	0 44	0.21	0 49		0.08	0 08	0 14	0 06
Dibenzofuran	mg/kg	-	-	_	-	_	0 11	0 10	0 18	-	0 07	0 06	0 03	0 43
2,4-Dichlorophenol	mg/kg	_	-	-	-	-	-	-	-		-	-	-	-
2,4-Dimethylphenol	mg/kg	-	-		-	-	-	-	-	-	-	-	-	-
3,4-Dimethylphenol	mg/kg	-	-	-	_	-	-	-	-	-	-	-	-	-
4,6-Dimitro-2 methylphenol	mg/kg	-	-	-	-	_	-	_	_	-	-	-	_	
2,4-Dimitrophenol	mg/kg	_	-	-		-	-	-			-	-	-	-
FI oranthen	mg/kg	0 053 U	0 21	0 054 U	0 053 U	0 056 U	3 40	3 40	7 70	-	0 96	1.20	3 00	1.20
Fluorene	mg/kg	0.0053 U	0 00 59 U	0 0054 U	0 0053 U	0 0056 U	0.20	0 14	0 37	-	0 15	0 15	0 04	0 57
Indeno(1,2,3-cd)pyrene	mg/kg	0 021 U	0 024 U	0 022 U	0 021 U	0 022 U	1.30	1 00	2.10	-	0.35	0 37	0.5 9	0.23
1 Methylnaphthalene	mg/kg	0 053 LJ	0 059 U	0 054 U	0 053 U	0 056 U		-	-	-	-	-	-	_
2 Methylnaphthalene	mg/kg	0 053 U	0 0 99	0 054 U	0.053 U	0 056 U	0 17	0 07	0 12	-	0 03	0 03	0 02	0 21
2 Methylphenol	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-
Naphthalene	mg/kg	0 0053 U	0 044	0 0054 U	0 0053 U	0 0056 U	0 19	0 10	0 14	-	0 07	0 04	0 04	0 48
2 N trophenol	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-
4-N trophenol	mg/kg	-	-		-	-	-	-	-	-		-	-	-
Pentachlorophenol	mg/kg	-	-	-	-	_	_	-	_	_	-	-	-	-
Phenanthrene	mg/kg	0 0053 U	0 079	0 011	0 0053 U	0 0056 U	1 40	1 40	3 20	-	0 35	0.38	0.85	1.20
Phenol	mg/kg	-	-	-	-	-	-	-	-	-	-	-	-	-
Pyrene	mg/kg	0 021 U	0 052	0 022 U	0.021 U	0 022 U	2.80	2.40	5 80	-	0 89	0 98	0 76	0.85
2,4,5-Trichlorophenol	mg/kg	-	_	-	-	-	-	-	-	-	-	-	_	_
2,4,6-Trichlorophen I	mg/kg	-	-	-	-	-	_	_	_	_	-	-	_	-

SOIL DATA SUMMARY PCBS AND PETROLEUM PRODUCTS FORMER PLAINWELL INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample Locatio Sample Date		93374 1/1/1999	CTP-4 12/11/2008	SB 1 2006	SB 2 2006	SB 2 2006	SB 2 2006	SB-3 2006	SB-3 2006	SB-4 2006	SB-6 2006	SPD-1 19 96	SPI 1 1996
Sample Depth (feet bgs)		_	(4)	(12.5-13)	(9-10)	(12 13)	(12 13)	(2 2.5)	(4-5)	(9-10)	(0-1)		(3-3.5)
Sample Typ							Duplicate						
	Units						•						
Petroleum Products													
TPH extr ctabl (DRO)	mg/kg	_	14000 D	_	_	_	_	_	_		_	_	_
TPH N n-P lar Material SGT HEM	mg/kg	0 264	-	_	_	_	_	_	_	_	_	_	_
TPH purgeabl (GRO)	mg/kg	-	93	_	_	- -	_		Ξ	_	_	_	_
TPH (C10-C28) DRO	mg/kg	-	_	-	_	_	_		_	_	_	_	
TPH (C6-C10) GRO	mg/kg		_	-	_	<u>-</u>	_	_	_	_		_	_
Titi (Co-Cit) GRO	ш у/ х у		_	-	_		_	_	_		_	-	_
PCBs													
Aroclor 1016 (PCB-1016)	mg/kg	_	11 U	-	_	_	_	_	-	_	-	_	_
Aroclor 1221 (PCB-1221)	mg/kg	_	11 U	-	-	-	-	_	-	-	-	_	_
Aroclor 1232 (PCB-1232)	mg/kg	-	11 U	-	-	-	-	-	_	-		0 47	_
Aroclor 1242 (PCB-1242)	mg/kg	_	11 U	_	_	_	_	_	-	-	_	_	_
Aroclor 1248 (PCB-1248)	mg/kg	_	11U	_	_	_	_	_	-	_	_	_	_
Aroclor 1254 (PCB-1254)	mg/kg	_	11 U	0.38 U	0.56 U	0.39 U	0.38 U	0.27 J'	0 19 J	0 62 U	0.36 U	_	0 82
Aroclor 1260 (PCB-1260)	mg/kg		11U	_	_	_	_	_	-	_		_	0 61
T tal PCB	mg/kg		11U	-	•••	-	-	-	-	_	-	-	1 40
SPLP PCBs													
Aroclor 1016 (PCB-1016)	mg/L	_	_	_	_	_	_	_	_	_	_	_	_
Aroclor 1221 (PCB-1221)	mg/L	_	-	_	_	_	_	_	-	-	_	_	_
Aroclor 1232 (PCB-1232)	mg/L	-	_	_	_	_	_	_	_	_	-	_	_
Aroclor 1242 (PCB-1242)	mg/L	_	_	-	_	_	_	_	_	_	_	_	_
Aroclor 1248 (PCB-1248)	mg/L	-	_	_	_	_	_	-	_	-	-	_	_
Aroclor 1254 (PCB-1254)	mg/L	_	_	_	_	_	_	_	_	_	-	_	-
Aroclor 1260 (PCB-1260)	mg/L	-	_	-	-	_	_	-	_	-	_	_	_

SOIL DATA SUMMARY PCBS AND PETROLEUM PRODUCTS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Sample L cation		SPI 1	SPL-1	SPL-1	SPL 1	SPL 1	SPL 2	SPL 2	SPL-2	SPL-4	SPL-4	SPL-4
Sample Date		1996	1996	1996	1996	1996	1996	1996	1996	1996	1996	1996
Sample Depth (feet bgs)			(0-0.5)	(4-6)	(6-8)		(0-0 5)	(8-10)	(10-12)	(0-0 5)	(12 14)	(16-18)
Sample Type	Umits											
Petroleum Products	umu											
Petroleum Products												
TPH extractable (DRO)	mg/kg	_	_		_	_	_	_	_	_	-	_
TPH Non Polar Material SGT HEM	mg/kg	_	_	-	-	-	-	-	-	-	-	-
TPH purge bl (GRO)	mg/kg	_	-	-	_	_	-	_	-	_	-	-
TPH (C10-C28) DRO	mg/kg	-	_	-	-	-	_	-	-	_	-	_
TPH (C6-C10) GRO	mg/kg	-	-	-	-	-	-	-	-	-	-	-
PCBs												
Aroclor-1016 (PCB-1016)	mg/kg	0 12	_	_	_	0 029	_	_	_	_	_	_
Aroclor-1221 (PCB-1221)	mg/kg	-	_	_	_	_	-	-	_	_	_	_
Aroclor 1232 (PCB-1232)	mg/kg	_	-	-	_	_	_	_		_	-	_
Aroclor 1242 (PCB-1242)	mg/kg	_	_		_	0 094	_	_	_	_	_	_
Aroclor-1248 (PCB-1248)	mg/kg	_	_	_	-	_	_	_	-	_	_	-
Aroclor 1254 (PCB-1254)	mg/kg	_	_	-	_	_	-	-	_	_	-	_
Aroclor 1260 (PCB-1260)	mg/kg	_	_	_	-	_	_	-		-	_	-
Total PCBs	mg/kg	-	0 051 U	0 27 J	0 12 J	-	0 04 J	02	0 025 J	0 051 U	15J	0 048 J
SPLP PCBs												
Aroclor 1016 (PCB-1016)	mg/L	_	-	_	_	_	-	_	-		_	_
Arocl 1221 (PCB-1221)	mg/L	_	-	_	-	_	_	_	-	_	_	_
Aroclor 1232 (PCB-1232)	mg/L	_	-	_	-	-	-	-	-	-	_	_
Aroclor 1242 (PCB-1242)	mg/L	_	-	-	-	-	-	-	-	-	-	-
Aroclor-1248 (PCB-1248)	mg/L	_	_	_	_	-	_	-	-	-	_	_
Aroclor 1254 (PCB-1254)	mg/L	_	-	-	-	-	_	-	-	_	-	-
Aroclor 1260 (PCB-1260)	mg/L	_	-	-	_	-	-	-	-	-	-	-

TABLE C4 Page 3 of 6

SOIL DATA SUMMARY PCBS AND PETROLEUM PRODUCTS FORMER PLAINWELL INC MILL PROPERTY PLAINWELL MICHIGAN

Sample Location Sample Date Sample Depth (feet bgs) Sample Type Petroleum Products	Units	SPL-6 1996 (0-0.5)	SPL-6 1996 (2-4)	SPL-6 1996	SPL-11 1996 (0-0 5)	SPL 11 1996 (10-10.5)	5PL-11 1996 (10.5-12)	SPL 13 1996 (0-0.5)	SPL 13 1996 (0.5-1)	SPL-13 1996 (14-16)	SPL-13 1996 (16-18)	SPL-13 1996
TPH tractabl (DRO)	mg/kg	-	-	-	-	-		-	-	_	-	-
TPH Non P lar Material SGT HEM	mg/kg	-	-	-	-	-	-	-	-	-	-	_
TPH purge bl (GRO)	mg/kg		-	-	-	-	-	-	-	-	-	_
TPH (C10-C28) DRO	mg/kg	_		-	-	-	-	-	-	-	-	_
TPH (C6-C10) GRO	mg/kg	-	-	-	-	-		-	-	-	-	-
PCBs												
Arocl 1016 (PCB-1016)	mg/kg	_	_	0 052	-	_	_	_	_	_	_	_
Aroclor-1221 (PCB-1221)	mg/kg	-	-	_	-	-	-	_	-	-		0 051
Aroci 1232 (PCB-1232)	mg/kg	-	_	_	-	-	-	-	_	-	_	_
Aroclor-1242 (PCB-1242)	mg/kg	-	_	-	_	-	_	-	_	_	-	_
Aroclor 1248 (PCB-1248)	mg/kg	-	_	-	_	-	-	_	-	_	_	_
Aroclor-1254 (PCB-1254)	mg/kg	-	-	-	-	-		-	-	_	-	0 051
Arocl r-1260 (PCB-1260)	mg/kg	-	-	-	-	_	_	_	_	-	-	-
T tal PCB	mg/kg	0.27	0 051 U	-	0 038 J	16J	0 051 }	0 051 U	0 051 U	0 11	0 091	0 091
SPLP PCBs												
Arocl r-1016 (PCB-1016)	mg/L	_	_	_	_	_	-	_	-	_	-	_
Arocl 1221 (PCB-1221)	mg/L	-	-	_	_	-	-	-	-	-	-	_
Aroclor 1232 (PCB-1232)	mg/L	-	-	-	-	-			-	_	_	-
Arocl 1242 (PCB-1242)	mg/L	_	-	-	-	-	_	-	_	-	-	-
Arocl r-1248 (PCB-1248)	mg/L	-	-	-	-	-	-	-	_	_	-	-
Arocl 1254 (PCB-1254)	mg/L	-	-	-	-	-	-	-	-	-	-	-
Aroclor 1260 (PCB-1260)	mg/L	-	-	-	-	-	-	-	-	-	-	-

SOIL DATA SUMMARY PCBS AND PETROLEUM PRODUCTS FORMER PLAINWELL INC MILL PROPERTY PLAINWELL MICHIGAN

Sample Location Sample Date Sample Depth (feet bgs) Sample Type	Units	TP 1 11/10/2008 (5.5)	TP 1 1/1/2009	TP 2 11/10/2908 (6)	TP 2 1/1/2009	TP-3 11/10/2008 (6.5)	TP 3 1/1/2009	TP-4 11/11/2008 (5)	TP-4 1/1/2009	TP 5 11/11/2008 (5 5)	TP 5 11/11/2008 (6)	TP 5 11/11/2008
Petroleum Products												
TPH xtractabl (DRO)	mg/kg	170 D	_	130 D	-	400 D	-	1100 D	-	940 D	900 D	_
TPH Non-Polar Material SGT HEM	mg/kg	-	-	-	-	-	-	-	-	-	-	_
TPH purgeable (GRO)	mg/kg	2.3 U	-	25 U	-	2.2 U	-	31 U	-	26 U	5.2 U	-
TPH (C10-C28) DRO	mg/kg	-	-	-		-	-	-	-	-	_	-
TPH (C6-C10) GRO	mg/kg	-	-	-	-	-	-	-	-	-	-	-
PCRs												
Aroclor 1016 (PCB-1016)	mg/kg	0 01 U	_	0 01 U	_	0 008 U	-	0 012 U	_	0 01 U	0 023 U	-
Aroclor-1221 (PCB-1221)	mg/kg	0 01 U	_	0 OI U	-	0 008 U	-	0 012 U	-	0 01 U	0 023 U	-
Aroclo 1232 (PCB-1232)	mg/kg	0 01 U	_	0 01 U	-	0 008 U	_	0 012 U	_	0 01 U	0 023 U	-
Aroclor 1242 (PCB-1242)	mg/kg	0 01 U	-	0 01 U	-	0 008 U	_	0 012 U	_	0 01 U	0 023 U	-
Aroclor 1248 (PCB-1248)	mg/kg	0 01 U	_	0 01 U	_	0 008 U	_	0 012 U	_	0 01 U	0 023 U	_
Aroclor-1254 (PCB-1254)	mg/kg	0 014 P	-	0 025	-	0 008 U	-	0 15		0 93	0 062	_
Aroclor 1260 (PCB-1260)	mg/kg	0 01 U	_	0 01 U	-	0 008 U	-	0 012 U		0 17	0 05 P	-
Total PCB	mg/kg	0 014 P	0 35	0 025	0.28	0 008 U	0 04	0 15	0 05	11	0 112	0 01
SPLP PCB												
Aroclor 1016 (PCB-1016)	mg/L	-	-	-	_	-	_	-	_	-	-	_
Aroclor-1221 (PCB-1221)	mg/L	-	-	-	-	-	-	-	-	-	-	-
Arocl r-1232 (PCB-1232)	mg/L	-	-	-	-	_	_	-	-	_	_	_
Aroclor-1242 (PCB-1242)	mg/L	_	-	-	-	-	-	-	-	-	-	-
Aroclor 1248 (PCB-1248)	mg/L	-	_	-	-	-	-	-	-	-	-	-
Aroclor-1254 (PCB-1254)	mg/L	-	-	-	-	-	-		-	-	-	-
Aroclor-1260 (PCB-1260)	mg/L	-	-	-	-	-	-	-	-	-	~	-

TABLE C 4 Page 5 of 6

SOIL DATA SUMMARY PCBS AND PETROLEUM PRODUCTS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Sample Locatio Sample Date Sample Depth (feet bgs) Sample Type	Units	TP-6 11/11/2008 (6)	TP-6 1/1/2009	TP 7 11/10/2008 (5.5)	TP-8 11/10/2008 (5)	TP 9 11/10/2008 (6)	TP 10 11/10/2008 (5.5)	TP 11 11/1 0/2008 (6)	TP 12 11/19/2008 (6-7)	TP 12 11/19/2008 (6-7) Duplicate	TP 13 11/10/2008 (6)	TP 14 11/10/2008 (5.5)
Petroleum Products												
TPH extractabl (DRO)	mg/kg	1700 D	_	690 D	840 D	140 D	900 D	130	76	91 D	37	160 D
TPH Non Polar Material SGT HEM	mg/kg	-		-	-	-		-	-	_	-	-
TPH purgeable (GRO)	mg/kg	2.5 U	_	3.3 U	3 U	3 U	2.6 U	2.8 U	2.2 U	2.1 U	2.2 U	3 U
TPH (C10-C28) DRO	mg/kg	-		-	-	+	-	-	-	-	-	-
TPH (C6-C10) GRO	mg/kg	-	-		-		-	-	-	-	-	-
PCBs												
Aroclor 1016 (PCB-1016)	mg/kg	0 011 U	_	0 013 U	0 15 U	0 013 U	0 012 U	0 012 U	0 0096 U	0 0098 U	0 0092 U	0.04
Aroclor 1221 (PCB-1221)	mg/kg	0 011 U	-	0 013 U	0 15 U	0 013 U	0 012 U	0 012 U	0 0096 U	0 0098 U	0 0092 U	0 014 U
Aroclor 1232 (PCB-1232)	mg/kg	0 011 U	_	0 013 U	0 15 U	0 013 U	0 012 U	0 012 U	0 0096 U	0 0098 U	0 0092 U	0 014 U
Aroclor 1242 (PCB-1242)	mg/kg	0 011 U	_	0 013 U	0 15 U	0 013 U	0 012 U	0 012 U	0 0096 U	0 0098 U	0 0092 U	0 065
Aroclor-1248 (PCB-1248)	mg/kg	0 011 U	_	0 013 U	0 15 U	0 013 U	0 012 U	0 012 U	0 0096 U	0 0098 U	0 0092 U	0 014 U
Arocl 1254 (PCB-1254)	mg/kg	0 011 U	-	0.5	14D	0 046	0 032	0 18	0 45 D	0 68 D	0 11	0 025 P
Arocl 1260 (PCB-1260)	mg/kg	0 011 U	_	0 013 U	0 15 U	0 013 U	0 012 U	0 04 P	01	0 14	0 019	0 014 U
T tal PCB	mg/kg	0 011 U	0 08	05	14D	0 046	0 032	0 22 P	0 10	0 14	0 129	0 065
SPLP PCB												
Aroclor-1016 (PCB-1016)	mg/L	_	_	_		_	-	-	-	~	_	_
Aroclor 1221 (PCB-1221)	mg/L	_	-	_	-	-	_	_	_	_	-	_
Aroclor 1232 (PCB-1232)	mg/L	_	_	_	-	-	-	-	-	-	-	-
Aroclor 1242 (PCB-1242)	mg/L		-	-	-	-	-	-	-	-	-	_
Aroclor 1248 (PCB-1248)	mg/L	-	-	_	_	_	_	-	_	-	_	-
Aroclor 1254 (PCB-1254)	mg/L	-	_	_	_	-	_	-	-	-	-	_
Aroclor 1260 (PCB-1260)	mg/L	_	_	-	-	-	-	_	-	_	-	-

SOIL DATA SUMMARY PCBS AND PETROLEUM PRODUCTS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Sample L cation Sample Date Sample Depth (feet bgs) Sample Typ Petroleum Products	Units	TP 15 11/10/2008 (6-7)	TP 16 11/12/2008 (5.5)	TP 17 11/12/2008 (7)	TP 18 11/12/2008 (8)	TP 18 11/12/2008 (8) Duplicate	TP 19 11/12/2008 (8)	TP 20 11/12/2008 (6)	TP 20 11/12/2008 (8.5)	TW 3 9/6/2006 	TW 3 DUP 9/6/2006 Duplicate	TW-6 9/6/2006 —
TPH extractable (DRO)	mg/kg	130 D	170 D	480 D	3200 D	3300 D	140 D	210 D	740 D	_	_	_
TPH Non P lar Material SGT HEM	mg/kg	_	_	_	_	_	_	_	_	_	_	_
TPH purgeabl (GRO)	mg/kg	26 U	2.8 U	8.8	97	13	3 U	3.2 U	3	_	_	_
TPH (C10-C28) DRO	mg/kg	_	_	_	-	-	_	_		_	_	_
TPH (C6-C10) GRO	mg/kg	-	-	-	-	-	-	-	-	-	-	-
PCBs												
Aroclor 1016 (PCB-1016)	mg/kg	0 012 U	0 014 U	0 0067 U	0 011 U	0 012 U	0 014 U	0 014 U	0 012 U	_		
Aroclor 1221 (PCB-1221)	mg/kg	0 012 U	0 014 U	0 0067 U	0 011 U	0 012 U	0 014 U	0 014 U	0 012 U	_	-	_
Aroclor 1232 (PCB-1232)	mg/kg	0 012 U	0 014 U	0 0067 U	0 011 U	0 012 U	0 014 U	0 014 U	0 012 U	_	_	_
Aroclor 1242 (PCB-1242)	mg/kg	0 012 U	0 014 U	0 0067 U	0 011 U	0 012 U	0 014 U	0 014 U	0 012 U	_	_	-
Aroclor 1248 (PCB-1248)	mg/kg	0 012 U	0 014 U	0 0067 U	0 011 U	0 012 U	0 014 U	0 014 U	0 012 U	-	-	_
Aroclor 1254 (PCB-1254)	mg/kg	0 012 U	0.27	0 0067 U	0 011 U	0 012 U	0 014 U	0 014 U	0 012 U	_	_	_
Aroclor 1260 (PCB-1260)	mg/kg	0 012 U	0 014 U	0 0067 U	0 011 U	0 012 U	0 014 U	0 014 U	0 012 U	-	_	_
T tal PCB	mg/kg	0 012 U	0.27	0 0067 U	0 011 U	0 012 U	0 014 U	0 014 U	0 012 U	_	-	-
SPLP PCBs												
Aroci 1016 (PCB-1016)	mg/L	_	_	_	_	_	_	_	-	0 0002 U	0 0002 U	0 0002 U
Aroclor 1221 (PCB-1221)	mg/L	_	-	_	-	-	_	-	-	0 0002 U	0 0002 U	_
Aroclor 1232 (PCB-1232)	mg/L	_	-	_	-	-	_	-	-	0 0002 U	0 0002 U	-
Aroclor-1242 (PCB-1242)	mg/L	-	_	-	-	_	_	_	-	0 0002 U	0 0002 U	-
Aroclor 1248 (PCB-1248)	mg/L	-	-	-	-	_	-	-	-	0 0002 U	0 0002 U	-
Arocl 1254 (PCB-1254)	mg/L	-	-	_	-	-	-	-	_	0 0002 U	0 0002 U	-
Aroclor 1260 (PCB-1260)	mg/L	-	-	_	-	_	_	_	-	0 0002 U	0 0002 U	-

TABLE C.5 Page 1 of 4

SOIL DATA SUMMARY METALS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample L cation Sample D te Sample Depth (f et l Sample Type	bgs)	BK1 1997 (1.5-2)	BK2 1997 (1.5-2)	BK3 1997 (1.5-2)	BK4 1997 (1.5-2)	BK5 1997 (2.5-3)	CTP-4 12/11/2008 (4)	DG1 1997 (0-1.5)	DG2 1997 (0-1.5)	DG3 1997 (0-1.5)	DG4 1997 (0-1.5)	DG5 1997 (0-1.5)	SB-1 2006 (12.5-13)	SB-2 2006 (9-10)
Metals	Umts													
METHIS														
Arsenic	mg/kg	2.7 U	2.7 U	2.7 U	2.9	11**	14.8°	36	44	6.8 ^{ec}	16 ^{ac}	27 U	8.5**	58
Banum	mg/kg	_	_	-	-	-	49	_	-	-	_	-	_	_
Cadmium	mg/kg	1.3	0 95	11	11	18	05 U	0 99	11	19	39	1	0 073	0 14
Chromium Total	mg/kg	12	51	61	54	15	12	59	55	11	28	6.3	20	18
Copper	mg/kg	2.7 U	2.7 U	48	64	19	_	38	2.6 U	120	220	5	13	38
Lead	mg/kg	31	78	31	32	53	20	74	32	140	990°°	11	10	15
Mercury	mg/kg	0 043 U	0 043 U	0 099	0 044 U	0.34	01 U	0 043 U	0 049	5.6 Per	1.1	0 043 U	0 020 J	0 075
Selenium	mg/kg	0.53 U	0.53 U	0.54 U	0.55 U	0 53 U	1.5°	0.53 U	0.53 U	0.56 U	06U	0.53 U	0 15	0.49
Sil er	mg/kg	_	_	_	_	-	10U	-	-	-	_	-	_	_
Zinc	mg/kg	27 U	27 U	29	36	74	-	27 U	26 U	230	450	27 U	30	140

)

TABLE C.5 Page 2 of 4

SOIL DATA SUMMARY METALS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample Location Sample Date Sample Depth (feet b Sample Type	bys)	5B-2 2006 (12 13)	SB-2 2006 (12 13) Duplicate	SB-3 2006 (2 2.5)	5B-3 2006 (4-5)	SB-4 2006 (9-10)	SB-5 2006 (2.5-3.5)	SB-6 2006 (0-1)	SB-7 2006 (0-0.5)	SB 7 2006 (0-0.5) Duplicate	SB-7 2006 (7 7 5)	SBA 1A 1997 (0-2)	SBA 1C/D 1997 (4-8)	SBA-2A 1997 (0-2)
5	Umts													
Metals														
Arseni	mg/kg	0 74	0.75	6.3°°	2.6	4	12 ^{br}	_	58	_	28™	_		-
Barium	mg/kg	_	-	_	-	-	-	-	-	-	-	-		_
Cadmium	mg/kg	0 019 J	0 018 J	0 14	0 16	0 17	0 42	-	0.27	-	14		-	_
Chromum Total	mg/kg	47	38	19°	15	12	14	_	76	_	30	_	_	_
Copper	mg/kg	3.2	2.8	23	36	32	240	_	22	_	250 **	_	_	-
Lead	mg/kg	2	19	59	15	87	160	_	41	-	180	23	2.4	18
Mercury	mg/kg	0 050 U	0.050 U	0.22	0 16	0 044 J	0.27°	_	0.28		6.3 ^{ecq}	_	_	
Selenium	mg/kg	01	01	0.3	0.33	1.1	1.4	-	0.5	_	0.38		_	_
Silver	mg/kg	-	-	_	-	-	-	-	-		-	-		_
Zinc	mg/kg	15	15	84	120	66	210	_	64	_	620		-	_

TABLE C.5 Page 3 of 4

SOIL DATA SUMMARY METALS FORMER PLAINWELL INC MILL PROPERTY PLAINWELL MICHIGAN

Sample L cation Sample Date Sample Depth (feet l	bgs)	SBA 2D 1997 (2-4)	SBA-3A 1997 (0-2)	SBA 3F 1997 (10-12)	SBA-4B 1997 (2-4)	SBA-4C/D 1997 (4-8)	SBA-5A 1997 (0-2)	SBA-5F 1997 (10-12)	SBG-1A/B 1997 (0-4)	SBG-1C/D 1997 (4-8)	SCSB-1 1997 (0-2)	SCSB-2A 1997 (0-2)	SCSB-3 1997 (0-2)	SCSB-4 1997 (0-2)
Sa mp le Type														
	Umts													
Metals														
Arsenic	mg/kg	-	-	-		_	-	-	-		26 U	6.5 ^{se}	2.7 U	2.6 U
Barium	mg/kg	-	-	-	_	_	-	-	-	-	_	-	_	-
Cadmi m	mg/kg	-	-	-	_	-	_	-	_		12	1.2	11	1
Chromium Total	mg/kg	_	-	-	-	-	_	_	_	-	55	9.2	47	56
Copper	mg/kg		-	-			-	-	_		2 U	10	56	26 U
Lead	mg/kg	2.3	23	3	20	19	51	2.1	200	41	2.8	62	96	2
Mercury	mg/kg	-	_	-	-	-	-	-	-	-	0 042 U	01	0 043 U	0 042 U
Seleni m	mg/kg	-	-	-	-	-	-	-	-	-	0.53 U	0 59 U	0.54 U	0.53 U
Silver	mg/kg	_	-	_	-	_	-	-	-	-	-	-	_	-
Zinc	mg/kg	_	_	_	_	_	_	_	_	_	26 U	68	27 U	26 U

TABLE C.5 Page 4 of 4

SOIL DATA SUMMARY METALS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Sample Location Sample Date Sample Depth (f et by Sample Type	हुइ) Usuts	SCSB-5 1997 (0-2)	TP 5 11/11/2008 (6)	TP 17 11 /12/2008 (7)	TP 18 11/12/2008 (8)	TP 19 11/12/2008 (8)	TP 20 11 /12/2008 (6)	TP 20 11/12/2008 (8 5)
Metals								
Arsenic	mg/kg	2.8 U	50	10.1 ^{bc}	9 7 ^{ac}	8.0 ^{pc}	6.2°°	11.7**
Barrum	mg/kg		233	144	200	46	118	135
Cadmium	mg/kg	11	2.4	06	6.5 ™	0.5 U	0.5	19
Chromium Total	mg/kg	43	75 TA	16	37 ^{ncs}	8	5	16
Copper	mg/kg	2.8 U	_		-	_	_	_
Lead	mg/kg	2.1	390	120	290	50	90	140
Mercury	mg/kg	0 045 U	1.2	0.5	0 9ª	0.9°	0.6	3.3°°°
Selenum	mg/kg	0.56 U	19	0.6	0.9ª	0.8	0.5 U	2.4
Sil er	mg/kg	_	1	1 U	1 U	1 U	1 U	1 U
Zinc	mg/kg	28 U	-	-	-	-	-	-

APPENDIX D

GROUNDWATER ANALYTICAL DATA

- D 1 GROUNDWATER SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES
- D 2 GROUNDWATER DATA SUMMARY VOC
- D 3 GROUNDWATER DATA SUMMARY SVOC AND PAH
- D 4 GROUNDWATER DATA SUMMARY PCBS
- D 5 GROUNDWATER DATA SUMMARY METALS

GROUNDWATER SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL INC MILL PROPERTY PLAINWELL MICHIGAN

Michigan Act 451, P rt 201 Generic Cleanup Criteri Residenti 1& Industrial & Groundwater Res dential & Industri 16 Groundw ter Commercial I Commercial II, III, IV Surf ce Water Commercial II III & IV Commercial I Contact Drinking W ter Drunking W ter I terface Groundwater Groundw ter V latilization to V latilizati to N of N of M Value Max V lue Number of Exceedanaes of Indoor Arr Inhalation Indoor Air Inhalatton S mples Detects Detect Part 201 Groundio ter Generic Cleanup Criteria Detect Umis ь f V lattle Organic Comp unds 17 1000000 1000000 32 mg/L 073 21 31000 0.005 0 005 ٥ 0 ٥ 0 n Acrylonitril mg/L 0 0026 0 011 0 0049 34 190 14 Ω n ۵ n n n n 0 005 0 005 0.2 56 35 11 35 0 0 0 0 0 0 Benzene mg/L 0 Brom benzene mg/L 0.018 0 05 180 390 12 21 0 0 NA 0 0 mg/L ID 35 Bromodichloromethane 0.08 0.08 4.8 14 n n NA 0 0 mg/L 0.08 0.08 ID 470 3100 140 32 ٥ 0 NA 0 0 ۵ Bromoform 0 035 32 0 0.029 70 n n Λ Bromomethane (Methyl Bromide) mg/L 0 01 a n 2 B tanone (Methyl Ethyl Ketone) mg/L 13 38 22 240000 240000 240000 28 n n ถ O Λ ۵ 32 Carbon dis Ifid mg/L 08 2.3 m 250 550 1200 Λ ብ NA Λ Ω 0 005 0.005 0 045 0.37 24 46 35 0 0 0 Carbo tetrachlorid mg/L 0 mg/L 01 01 0 047 210 470 35 ۵ 0 Chlombenzene Chlorobrom methane mg/L NC NC NC NC NC NC 18 NA NA NA NA NA NA 5700 35 mg/L 043 17 m 5700 440 n 0 Chloroethane ß 0 NA ٥ ٨ NC ID ID 2-Chloroethyl vinyl ether mg/L ID ID ID 14 0 NA NA NA NA NA NA Chloroform (Trichl romethane) mg/L 0 08 0.08 017 28 180 150 35 0 0 0 0 ٥ 0 0 Chloromethane (Methyl Chloride) mg/L 0 26 11 ID 86 45 490 35 0 0006 0 0006 0 0 NA 0 0 0 mg/L 0 15 0 42 D 220 370 17 ٥ 0 0 NA 0 0 Ω 2-Chl rotoluene NC NC NC NC NC 17 NA mg/L NC ٥ NA NΑ NA NA NA 4-Chlorotoluene cis-1,2 Dichloroethene mg/L 0 07 0 07 0.62 93 210 200 35 n n n n n 0 Λ cis-1,2 Dichloropropene mg/L NC NC NC NC NC NC 18 0 NA NA NA NA NA NA cis-1,3-Dichloropropene mg/L NC NC NC NC NC NC 14 0 NA NA NA NA NA NA Cymene (p-Isopropyltoluene) mg/L NC NC NC NC NC NC 17 NA NA NA NA NA NΑ mg/L 0 0002 NC 1.2 1.2 0.39 17 1,2 Dibromo-3-chloropropane (DBCP) 0 0002 0 NA 0 mg/L 0.08 0.08 ID 14 110 18 31 0 NA 0 0 Dibromochloromethane 0 00005 0.00005 0 0002 2.4 15 0 025 17 0 0 0 1,2 Dibromoethane (Ethylene Dibromid) 0 mg/L 0.23 NC m ID 530 14 NΑ NΔ ٥ NA Dibrom methane mg/L 0.08 17 1,2-Dichlorobenzene mg/L 06 06 0 016 160 160 160 Λ 0 n Ω 0 1,3-Dichlorobenzene 0 0066 0 019 0 038 D ID 2 17 O Λ ۵ ٥ NA NA a mg/L 0 075 0 075 0 013 16 74 17 n n 0 0 0 0 ۵ 1,4-Di hl robenzen mg/L mg/L ID 220 300 300 17 0 0 NA 0 0 0 Dichl rodifl oromethane (CFC 12) 17 48 1000 2300 35 ٥ O mg/L 0.68 2.5 074 2400 0 0 0 11D hl roethan 0 005 0 005 0.36 96 59 19 35 0 0 0 ٥ 0 0 mg/L 1,2-D hl roethan 0 065 0.2 35 0 Ω ۵ 0 ٥ 0.007 0.007 13 11 a 11 Dichloroethen mg/L 35 0.29 Λ n ٥ Ω ٥ 1,2 Dr hl ropropan mg/L 0 005 0 005 16 36 16 Ω n NC NC NC 17 n NA NA 1,3-Dichl ropropan mg/L NC NC NC NA NA NA NA 2,2 Dichloropropane NC NC NC NC NC NC 17 Λ NA NA NA NA NA NA mg/L mg/L NC NC NC NC NC NC 14 NA NA NA NA NA NA 11 Dichloropropens mg/L 0 03 0 086 ID 8 3 0 0 NA 0 Dusopropyl ether 0 018 110 170 35 mg/L 0 074 0 074 170 0 0 Ethylbenzene 17 Hexachlorobutad en mg/L 0 015 0.042 0 00005 16 32 04 0 0 0 0 0 0 NC 4200 8700 5200 32 2.9 0 Ω NA O 0 0 2 Hexanone mg/L 1 17 Isopropylbenzene mg/L 08 2.3 ID 56 56 56 Ω 0 0 NA Ω Ω 0

mg/L

NC

NC

NC

NC

NC

NC

14

NA

NA

NA

NA

NA

NA

m&p-Xylene

TABLE D.1

GROUNDWATER SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

M chigan Act 451, Part 201 Generi Cleanup Criteria (1) Residential & Industrial & Groundwater Residential & Industrial & Groundw ter Commercial II, III, IV Surface W ter Commercial I Commercial IL III & IV Contact Drinking W ter Groundw ter Drinking W ter Interfac Groundw ter V latiliz tion to V latilization to N f No of M V lue Max Value Number f Exceedanaes of Indoor Arr Inhalation Indoor Arr Inhalation Samples Detects Detect Detect Part 201 Groundw ter Generic Cle nup Criteri Units ь V lattle Organic C mp unds Methyl Tert Butyl Ether mg/L 0 04 0 04 073 47000 47000 610 17 0 0 0 0 0 0 0 ID 20000 20000 13000 32 4-Methyl 2 Pentanone (Methyl Isobutyl Ket ne) mg/L 1.8 5.2 0 0 0 NA 0 0 mg/L Methylene chlorid 0 005 0 005 094 220 1400 220 35 0 0 0 0 N phthalene mg/L 0.52 15 0 013 31 31 31 17 0 0 0 0 n-B tylbenzene mg/L 0.08 0.23 ID D ID 59 21 0 ٥ NA NA NA ٥ ID 0.08 0 23 m ID 15 17 n-Propylbenzene mg/L ٥ n NA NA NA ٥ 0.28 0.035 190 190 0.28 190 14 Ω n n o-Xylene mg/L a 0 ٥ 0.23 IĎ ID 21 0 2 Phenylbutane (sec B tylbenzene) mg/L 0 08 ID 4.4 n NA NA NA ٥ 0.08 170 97 32 Styrene mg/L 01 01 310 ۵ 0 0 0 mg/L 0.08 0.23 NC ID ID 89 21 NA NA NA tert B tylbenzene 1 1 1 2 Tetrachloroethan 0.077 0.32 DХ 15 96 30 14 NA mg/L 0 0 035 0 078 12 77 4.7 35 1 1.2.2 Tetrachloroethane mg/L 0.0085 O O 0 005 0 005 0.045 25 170 12 35 0.00038 0.00038 mg/L 1 ο ο ٥ Tetrachloroethene 530 0 00029 0 00029 079 0 14 530 530 35 0 O T l en mg/L 0.79 1 a 0 0 0 trans-1,2 Dichloroethene mg/L 01 01 1.5 85 200 220 35 0 0 0 0 0 0 0 trans-1,3-Dichloropropene mg/L NC NC NC NC NC NC 32 ถ NA NA NA NA NA NA mg/L NC NC NC NC NC NC 17 NA NA NA NA NA NA 1,2,3-Trichlor benzene 0.07 0 03 300 300 19 17 0 ٥ mg/L 0.07 0 0 0 1,2,4-Trichlorobenzen 0.2 02 0.2 660 1300 1300 35 0 ٥ n 0 Ð n 111 Trichloroethan mg/L 0.33 17 21 11,2 Trichl roethane mg/L 0 005 0 005 110 35 n n ถ Λ Λ 0 Ω 0.2 22 35 In hloroethen mg/L 0.005 0 005 15 97 Λ 0 ٥ 0 0 n 1100 35 Trichlorofluoromethane (CFC 11) mg/L 2.6 7.3 NC 1100 1100 0 NA 0 0 1,2,3-Trichloropropane 0 042 012 NC D ID 84 14 0 NA NA mg/L 1,2,4-Trimethylbenzene mg/L 0 063 0.063 0 017 56 56 17 0 0.072 0.072 0 045 61 61 61 17 0 0 0 0 1,3,5-Trimethylbenzene mg/L NC 4100 8900 8000 14 0 0 0 NA 0 Virtyl cetate mg/L 0 64 1.8 0 002 0 015 13 35 0 0 0 0 Vinvl hl ride mg/L 0 002 11 1 0 0 0

190

190

21

0 00018 [

0 00026 [

0

0

a

0

۵

Xylene (total)

mg/L

0.28

0.28

0.035

190

TABLE D1

GROUNDWATER SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL INC MILL PROPERTY PLAINWELL, MICHIGAN

Michigan Act 451, Part 201 Generic Cleanup Criteria (1) Residential & Industrial & Groundwater Residential & Industrial & Groundwater Commercial I Commercial II, III, IV Surface Water Commercial I Commercial II, III & IV Contact Groundw ter Groundus ter Drinking Water Drinking W ter I terfac V latilizati to N f M V lue Max Value V latel zation to No. of Number of Exceedanaes of Indoor Ast Inhalation Indoor Air Inhalation Detects Part 201 Groundw ter Generic Cleanup Criteria Umits Semi-V lattle Organic Compounds 38 0 019 4.2 Acenaphthene mg/L 13 4.2 4.2 37 1 0.0000661 0 000066 T 0 0 0 0 0 Acenaphthylene mg/L 0 052 0 15 ID 39 39 39 37 0 000041 J 0 000041 J NA 0 1 ٥ Ð 0 053 0 004 NLV 140 0.22 NLV 14 Anılıne mg/L 0 0 0 NA NA 0 Anthracen mg/L 0 043 0 043 D 0 043 0 043 0.043 14 1 0 000054 0 000054 } NA 0 0 0 Benzidine mg/L 0 0003 0 0003 ID NLV NLV 0 0071 14 0 0 0 NA NA NA 0 mg/L 0 0085 D NLV NLV 0 0094 37 Benzo()anthracene 0.0021 1 0 00018 0 00018 Ω ٥ NA NA NA 0 mg/L 0 005 0 005 ID NLV NLV 0 001 37 0 0002 0 0002 NΑ NA Benzo()pyrene 1 n NA n 37 0.0015 0.0015 m ID 0.0015 Benzo(b)fi oranthene mg/L ID 1 0.00016 0 00016 ۵ NA NA NA 0 Benzo(g,h,)perylen mg/L 0 001 0 001 NC NLV NLV 0 001 37 1 0.00034 0 00034 n n NA NA NA 0 37 Benzo(k)fluoranthene mg/L 0 001 0 001 NC NLV NLV 0 001 0 00008 0.00008 0 NA NA NA 32 92 NC NLV NLV 3500 14 14 0 003 0 006 Benzoic acid mg/L 0 NA NA NA 0 mg/L Benzyl Alc hol 10 29 NC NLV NLV 44000 14 0 n NA NA O NA ٥ mg/L NC NC NC NC NC NC 14 0 4-Bromophenyl phenyl ether NA NA NA NA NA NA mg/L 1.2 27 0.074 NI V NLV 27 14 B tyl benzylphthalate 0 0 0 0 NA NA 0 74 mg/L 0 085 0.35 0 01 NLV NLV 14 0 0 0 0 NA NA 0 4-Chloro-3-methylphenol mg/L 0 15 0 42 0 0074 NLV NLV 79 17 0 n 0 0 NA NA 0 mg/L NC NC NC NC NC NC 14 0 NA NA NA NA NA 4-Chi roanilme NA bis(2-Chl roethoxy)methan mg/L NC NC NC NC NC NC 14 0 NA NA NA NΑ NA NA 0 002 0.0083 0.015 38 210 57 mg/L 14 O Ω bis(2-Chl roethyl) ther Λ n n ถ Ω 67 2-Chloronaphthalene mg/L 18 5.2 NC ID ID 14 a 0 0 NA NA NA 0 2-Chlorophenol mg/L 0 045 013 0 022 ID ID 94 17 0 0 NA NA Ω NC NC NC NC NC NC mg/L 14 NA NA NA NA NA NA 4-Chlorophenyl phenyl ether mg/L 0.0016 ID ID 0 0016 37 0 0016 ID 0 00049 0 00049 0 NA NA Chrysene 1 0 NA 0 NLV Dibenz(a,h)anthracene mg/L 0 002 0 002 ID NLV 0 002 37 1 0 00009 0.00009 0 NA NA NA ٥ n mg/L 1D D 0 004 m ID ID 14 0 NA NA 0 NA NA Dibenzofuran NA 160 0 016 160 1,2 Dichl robenzen mg/L 06 06 160 14 0 0 0 0 0 0 0 0 038 ID 1,3-D hl robenzen mg/L 0 0066 0.019 ID 2 14 0 0 0 0 NA NA 0 0 013 1,4-Dichl robenzene mg/L 0 075 0 075 16 74 64 14 0 0 0 0 0 0 mg/L 0 0011 0 0043 0 0003 NLV NLV 0 18 14 0 0 0 NA NA 3,3' Dichlorobenzidine 0 mg/L 0 073 0.21 0 019 NLV NLV 48 17 0 n NA NA ٥ 2.4-Dichl rophenol mg/L 0.38 NLV 520 17 0.37 NLV a 0 0 NA NA 0 2,4-Dimethylphenol 1 mg/L 0.01 0 029 NC NLV NLV 18 0 0 NA NA 3.4-Dimethylphenol NA Ω mg/L 5.5 16 011 NLV NLV 1100 14 0 0 0 NA NA 0 Diethyl phthalate ٥ NC NT V 4200 14 a 73 210 NLV O NA NA Dimethyl phthalate mg/L Λ NA n 0 0097 NLV 11 n Dı butylphthalate mg/L 0.88 2.5 NLV 14 0 0 NA NA ۵ 0 02 0 02 NLV NLV 95 17 ถ 0 NA NA 4,6-Dirutro-2-methylphenol mg/L NA 2.4-Dinitrophenol mg/L NC NC NC NC NC NC 17 NA NA NA NA NA NA 0.0077 0 032 NC NLV NLV 86 2.4-Dinstrotoluene mg/L 14 0 O NA NA NA ٥ mg/L NC NC NC NC NC NC 14 NA NA NA 2,6-Durutrotoluene NA NA NA mg/L 0 13 0.38 ID NLV NLV 04 14 n NA Dr-n-octyl phthalate 0 n NA NA 0 NC NC 1,2 Diphenylhydrazine mg/L NC NC NC NC 14 0 NA NA NA NA NA NA 0 032 NLV 0.32 bis(2 Ethylhexyl)phthalat mg/L 0 006 0 006 NLV 14 1 0 003 0 003 0 0 0 NA NA ٥

Fl ranthene

0.21

mg/L

0.21

0 0016

0.21

0 21

0.21

37

0 00006 T

0 0011

0

0

0

0

0

TABLE D 1

GROUNDWATER SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

		Mich	ig Act 451, P ri	t 201 Generic Cleanup Crit	ena (1)	_										
•	Residential &	Industrial &	Groundw ter	Residential &	Indu trial &	Groundwater										
	Commercial I	Commercial II, III, IV	Surface W ter	Commercial I	Commercial II III & IV	Contact										
	Drinking W ter	Drinking W ter	Interface	Groundwater	Groundw ter											
				V latilization to	Volatilizatio to		N of	N of	Min V lue	Max V lue		Nu	mber of Ex	ccedanaes	of	
				Indoor Air Inhalation	Indoor Arr Inhalatson		Samples	Detects	Detect	Detect	Par	t 201 Grou	ndwater (enen Cle	amp Crite	.97
Units		ь		ď		f						ь		d		
Sem: V latile Organic Compounds																
Fl ren mg/L	0 88	2	0 012	2	2	2	37	1	0 000034 J	0 000034 J	0	0	0	0	0	0
Hexachlorobenzene mg/L	0 001	0 001	0 0002	0 44	3	0 0046	14	0	-	-	0	0	0	0	0	0
Hexachlorobutadien mg/L	0 015	0 042	0 00005	1.6	32	04	14	0	-	-	0	0	0	0	0	0
Hexachlorocycl pentadien mg/L	0.05	0 05	ID	0 13	0 42	16	14	0	-	-	0	0	NA	0	0	0
Hexachloroethane mg/L	0.0073	0 021	0 0067	27	50	19	14	0	-	-	0	0	0	0	0	0
Indeno(1,2,3-cd)pyren mg/L	0 002	0 002	ID	NLV	NLV	0 002	37	0	-	_	0	0	NA	NA	NA	0
Isophorone mg/L	0.77	31	0.57	NLV	NLV	990	14	0	-	-	0	0	0	NA	NA	0
2 Methylnaphthalene mg/L	0 26	0 <i>7</i> 5	ID	ID	ID	NC	37	0	~	_	0	0	NA	NA	NA	0
1 Methylnaphthalene mg/L	NC	NC	NC	NC	NC	25	17	1	-	_	NA	NA	NA	NA	NA	NA
2 Methylphenol mg/L	0.37	1	0 071	NLV	NLV	810	17	0	~	-	0	0	0	NA	NA	0
4-Methylphen 1 mg/L	0 37	1	0 071	NLV	NLV	810	14	0	0 0000 59 J	0 000059 }	0	0	0	NA	NA	0
N phthalene mg/L	0.52	15	0 013	31	31	31	37	6	0 000026]	0 000076 J	0	0	0	0	0	0
2 N'troamline mg/L	NC	NC	NC	NC	NC	NC	17	0	-	-	NA	NA	NA	NA	NA	NA
3-N troamline mg/L	NC	NC	NC	NC	NC	NC	14	0	_	_	NA	NA	NA	NA	NA	NA
4-Nitroanilme mg/L	NC	NC	NC	NC	NC	NC	17	0	-	-	NA	NA	NA	NA	NA	NA
N trobenzene mg/L	0 0034	0 0096	0 18	280	550	11	14	0	~	_	0	0	0	0	0	0
2-N trophen I mg/L	0 02	0 058	ID	NLV	NLV	79	14	0	-	-	0	0	NA	NA	NA	0
4-N trophenol mg/L	NC	NC	NC	NC	NC	NC	14	0	-	-	NA	NA	NA	NA	NA	NA
N N trosodi n-propylamine mg/L	0 005	0 005	NC	NLV	NLV	0.36	14	0	-	_	0	0	NA	NA	NA	0
N N trosod phenylamine mg/L	0.27	11	NC	NLV	NLV	35	14	0	_	-	0	0	NA	NA	NA	0
2,2 -oxybis(1-Chloropropane) mg/L	NC	NC	NC	NC	NC	NC	14	0	-	-	NA	NA	NA	NA	NA	NA
Pentachlorophenol mg/L	0 001	0 001	G,X	NLV	NLV	0.2	17	0	-	_	0	0	NA	NA	NA	0
Phenanthrene mg/L	0 052	0 15	0.0024	1	1	1	37	2	0 000076 J	0 00031 J	0	0	0	0	0	0
Phenol mg/L	4.4	13	0.21	NLV	NLV	29000	17	0	-	-	0	0	0	NA	NA	0
Pyrene mg/L	0 14	0 14	ID	0 14	0 14	0 14	37	2	0 000045]	0 000074 J	0	0	NA	0	0	0
1,2,4-Trichlorobenzene mg/L	0 07	0 07	0 03	300	300	19	14	0	-		0	0	0	0	0	0
2,4,5-Trichlorophen 1 mg/L	0.73	2.1	NC	NLV	NLV	170	17	0	-	-	0	0	NA	NA	NA	0
2.4.6-Trichlorophen I mg/L	0 12	0 47	0 0044	NLV	NLV	10	17	0	-	-	0	0	0	NA	NA	0

GROUNDWATER SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL INC MILL PROPERTY PLAINWELL MICHIGAN

Michigan Act 451, Part 201 Generic Cleanup Criteri Groundwater Residential & Groundwater Residential & Industrial & Industrial & Commercial I Commercial II, III, IV Surface Water Commercial I Commercial II III & IV Contact Drinking W ter Drinking W ter Groundw ter Groundwater Interface V latilization to V I tilizatio to N of N of Mm V lue Max V lue Number of Exceedanaes of Indoor Air Inhalation Indoor Arr Inhalation Samples Detects Detect Part 201 Groundwater Generic Cleanup Criteria Units ь PCB Aroclor-1016 (PCB-1016) mg/L 0 0005 0 0005 0 0002 0 045 0 045 0 0033 14 0 0 0 Aroclor 1221 (PCB-1221) 0 0005 0 0005 0 0002 0 045 0 045 0 0033 14 mg/L 0 0 0 0 0 0 0 0 0002 0 0033 Aroclor 1232 (PCB-1232) 0 0005 0 045 mg/L 0 0005 0 045 14 0 0 0 0 0 0 0 Aroclor-1242 (PCB-1242) 0 0002 0 0033 mg/L 0 0005 0 0005 0 045 0 045 14 0 Aroclor-1248 (PCB-1248) mg/L 0 0005 0 0005 0 0002 0.045 0 045 0 0033 14 0 0 0 0 Aroclor-1254 (PCB-1254) 0 0005 0 0005 0 0002 0 045 0 045 0 0033 14 mg/L 0 0 0 0 0 0 Aroclor-1260 (PCB-1260) 0 0005 0 0005 0 0002 0.045 0 045 0.0033 14 0 0 mg/L 0 0 0 0 0 0 0002 0.0005 0.0005 0 045 0 0033 14 Total PCBs mg/L 0 045 0

TABLE D 1

GROUNDWATER SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

			Mich	igan Act 451, Pari	t 201 Generic Cleanup Crit	eria (0)											
	_	Residential &	Industrial &	Groundw ter	Residenti 18	Industri 1&	Groundwater										
		Commercial I	Commercial II, III, IV	Surface Water	Commercial I	Commercial II, III & IV	Contact										
	i	Drinking Water	Drinking Water	Interface	Groundwater	Groundwater											
					V latilization to	Volatilization to		No. of	No. of	Mm V lue	Max V lue		Nu	unber of E	tceedanaes	: of	
					I door Air Inhalation	Indoor Ast Inhalation		Samples	Detects	Detect	Detect	Par	t 201 Grou	mawater (Senenc Cle	eanup Criti	eria
U:	mis		ь		d		f						ь		d		ſ
Metals																	
Aluminum m	ıg/L	0 05	0 05		NLV	NLV	64000	14	14	0 013	0 062	1	1	NA	NA	NA	0
Antimony my	g/L	0 006	0 006	0 13	NLV	NLV	68	14	5	0 0006	0 0051	0	0	0	NA	NA	0
Arsenic m	g/L	0 01	0 01	0 15	NLV	NLV	4.3	35	17	0 00047]	0 03	5	5	0	NA	NA	0
Barium m	g/L	2	2	GX	NLV	NLV	14000	14	14	0 046	0 313	0	0	NA	NA	NA	0
	g/L	0.004	0 004	G	NLV	NLV	290	14	0	-	-	0	0	0	NA	NA	0
Cadmium m	g/L	0 005	0 005	G,X	NLV	NLV	190	35	3	0 000074 J	0 01	1	1	NA	NA	NA	0
	g/L	NC	NC	NC	NC	NC	NC	14	14	67 6	320	NA	NA	NA	NA	NA	NA
Chromium Total m	g/L	01	01	0 011	NLV	NLV	460	35	16	0 0005	0 02	0	0	3	NA	NA	0
Cobalt m	ıg/L	0 04	01	01	NLV	NLV	2400	14	7	0 0005	0 0013	0	0	0	NA	NA	0
Copper m	ıg/L	1	1	Ģ	NLV	NLV	7400	35	14	0 00065 J	0 03	0	0	0	NA	NA	0
Iro m	ıg/L	03	03	NC	NLV	NLV	58000	14	14	0 039	35	4	4	NA	NA	NA	0
	ıg/L	0 004	0 004	GX	NLV	NLV	ID	38	7	0 00062 J	0 02	3	3	NA	NA	NA	NA
Magnes um m	ıg/L	400	1100	NC	NLV	NLV	1000000	14	14	167	27 2	0	0	NA	NA	NA	0
Manganese m	ıg/L	0 05	0 05	G,X	NLV	NLV	9100	14	14	0 005	2 92	12	12	NA	NA	NA	0
Mercury m	ιg/L	0 002	0 002	0 0000013	0 056	0 056	0 056	35	1	-	0 000037 J	0	0	1	0	0	0
Mercury m	ıg/L	0 002	0 002	0 0000013	0 056	0 056		14	8	0 0000011	0 0000324	0	0	6	0	0	NA
Nickel m	ıg/L	01	01	G	NLV	NLV	74000	14	14	0 0005	0 002	0	0	0	NA	NA	0
P tassium m	ıg/L	NC	NC	NC	NC	NC	NC	14	14	2.4	4.24	NA	NA	NA	NA	NA	NA
Selenium m	ıg/L	0 05	0 05	0 005	NLV	NLV	970	35	2	0 0009	0 00096 J	0	0	0	NA	NA	0
Silver m	ıg/L	0.034	0 098	0.0002	NLV	NLV	1500	14	0	-	-	0	0	0	NA	NA	0
Sodium m	ıg/L	120	350	NC	NLV	NLV	1000000	14	14	173	102	0	0	NA	NA	NA	0
Thailium m	ıg/L	0 002	0 002	0 0037	NLV	NLV	13	14	0	-	-	0	0	0	NA	NA	0
Vanadrum m	g/L	0.0045	0 062	0 012	NLV	NLV	970	14	1	0 0006	0 0006	0	0	0	NA	NA	0
Zinc m	ıg/L	2.4	5	G	NLV	NLV	110000	35	7	0 01	0 18	0	0	0	NA	NA	0
Wet																	
Cyanid m	ıg/L	02	0.2	0.0052	NLV	NLV	NC	14	5	0 01	0 01	0	0	5	NA	NA	0

GROUNDWATER SCREENING CRITERIA AND SUMMARY OF EXCEEDANCES FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Notes.

- parameter not analyzed.
- G groundwater surface water interfac (CSI) criterion depends the pH or water hardness, or both, of the receiving surface water
- I estimated ncentral
- ID means insufficent data to develop criterion
- mg/L milligrams per litter
- NC Michigan Act 451 Part 201 Clean p Criteria exists fo this parameter
- NLV chemical is not likely to latiliz
- PCBs polychlormated biphenyls
- NA N t Applicable
- U t present t bove th associated al
- X The CSI criterion hown in the generic clean p criteria tables is not protective for surface water that is used as drinking water source.

Michigan Act 451, Part 201 Generi Cleanup Criteria

- Residential & Commercial I Drinking W ter
- b Industrial & Commercial II, II, IV Drinking W ter
- Groundwater Surface W ter Interface Protection
- d Residential & Commercial I Groundwater V latilization to indoo Air inhalation
- Industrial and Commercial II, III & Groundwater V latilization to Indoor Air Inhalation
- f Groundwater Contact Protectio

TABLE D.2

GROUNDWATER DATA SUMMARY VOC\$ FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Sample L. cation Sample D t		PM MW1 12/16/2008	PM MW2	PM-MW3 12/17/2008	PM MW4 12/17/2008	PM-MW4 12/17/2008	PM-MW5 12/17/2008	PM MW6 12/16/2008	PM-MW7 12/17/2008	PM-MW8 12/17/2008	PM MW9 12/16/2008	PM MW10 12/17/2008	PM MW11 12/16/2008	PM MW12 12/16/2008	PM MW12 12/16/2008
S mple Type	Umts	12/14/2000	14141300	2417200	14/1/4000	Dupl t	12172000	12/19/1000	12/1/2000	12/1/2000	12/14/100	12/17/2000	12/14/100	12/14/2006	Duplicate
3 mpie 19pe	anii s					Σиρ									Бириши
Acetone	mg/L	0 005 U	0 005 U	0 005	0 005 U	0 005 ປ	0 005 U	0 005 U	0 00o U	0 005 U					
Acrylonitral	mg/L	-	-	_	-	_	-	_	_	_	_	-	_	_	~
Benzene	mg/L	0 0005 U	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0.0005 U	0.0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Bromobenzene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 じ	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Bromodichlor methane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Bromoform	mg/L	0 0005 U	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 ป	0 0005 U	0 0005 ひ	0 0005 U	0 0005 U
Bromomethane (Methyl Bromide)	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
2 Butanone (Methyl Ethyl Ketone)	mg/L	0.002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
n-B tylbenzene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
tert B tylbenzene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Carbon di ulfid	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 บ
Carbo tetrachlorid	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Chl robenzene	mg/L	0 0005 U	0 00005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 บ
Chl robromomethane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 ひ	0 0005 U	0 0005 U	0 0005 U
Chloroethane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	U c000 0	0 0005 U	0 0005 U	0 000b U
2-Chl roethyl vinyl ether	mg/L	_	_	_	-	-	_	_	_	-	-	_	_	_	-
Chl roform (Trichlor methane)	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Chloromethane (Methyl Chloride)	mg/L	0 0005 U	0 0 005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0006
2-Chlorotol en	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
4-Chl rotol ene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Cymene (p-Isopropyltol en)	mg/L	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Dibromochloromethane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 TJ	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Dibrom methan	mg/L	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 000 5 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
1,2 Dibromo-3-chloropropane (DBCP)	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
1,2 Dibromoethane (Ethylene Dibromud)	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
1,2 Dichl robenzen	mg/L	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
1,3-D: hlorobenzen	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
14-D hl robenzen	mg/L	0 0005 U	0 0005 ひ	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Dichlorodifl oromethan (CFC 12)	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 び	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
11 Dichl roethane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
1,2 Dichloroethan	mg/L	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
1 1 Dichl roethene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0.0005 U	0 0005 U	0 0005 U
cis-1,2 Dichl roethene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
trans-1,2 Dt hl roeth ne	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0 005 U	0 0005 U	0 0005 U
11 Di hloropropene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
1,2 Dichl ropropane	mg/L	0.0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 00005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
cis-1,2 Dichl ropropene	mg/L	-	-	_	_	-	-	-	-	-	-	-	-	-	-
1,3-Dichl ropropan	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 TJ	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
cas-1,3-Di hl ropropen	mg/L	0 0005 U	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
trans-1,3-Dichlor propene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
2,2 Dichl ropropane	mg/L	0 0005 ひ	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Duso propy l ether	mg/L	-	-	-	-	-	-	-	_	-	-	-	-	-	_
Ethylbenzene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 ປ	0.0005 ປ
Hexachlorobutadiene	mg/L	0 0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0.0005 U	0 0005 U	0.0005 U	0.0005 U	0 0005 U	0.0005 U	0 0005 U	0.0005 U	0 0005 U
2 Hexan ne	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
lsopropylbenze	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U

CRA 56394 (2)

GROUNDWATER DATA SUMMARY VOCS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Sample Location Sample Date Sample Type	Umts	PM MW1 12/16/2008	PM MW2 12/16/2008	PM-MW3 12/17/2008	PM-MW4 12/17/2008	PM MW4 12/17/2008 Duplicate	PM-MW5 12/17/2008	PM-MW6 12/16/2008	PM MW7 12/17/2008	PM-MW8 12/17/2008	PM MW9 12/16/2008	PM MW10 12/17/2008	PM-MW11 12/16/2008	PM MW12 12/16/2008	PM MW12 12/16/2008 Duplicate
Methyl Tert B tyl Ether	mg/L	0 0005 U	0.0005 U	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 じ	0 0005 U	0 0005 U	0 000b U	0 0005 U
Methylene chlond	mg/L	0 0005 U	0.0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 び	0 0005 U	0 0005 U	0 0005 U	0 0005 U
4-Methyl 2 Pentanone (Methyl Isobutyl Ketone)	mg/L	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 ປ	0.002 U	0 002 U
N phthalene	mg/L	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 00005 U	0.0005 U
2 Phenylbutane (sec-B tylbenzene)	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 じ	0 0005 U	0 0005 U	0.0005 U	0.0005 U
n-Propylbenzen	mg/L	0 0005 U	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 び	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Styrene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 บ
1 1 1,2 Tetrachioroethan	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 000o U	0 0005 じ	0 0005 U
1 1,2,2 Tetrachloroethane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Tetrachloroethene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0.0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U
Tien	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 000s U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 00005 U	0 0005 U	0.0005 U
1,2,3-Trichlorobenzene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 ひ	0 0005 U	0 0005 U	0 0005 U	0 0005 U
1,2,4-Trichlorobenzene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 00005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
111 Trichloroethane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 ひ	0 0005 U	0 0005 U	0 0005 U	0.0005 U
11,2 Trichl roethane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 ひ	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Trichloroethene	mg/L	0 0005 U	0 00005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 ป	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Trichlorofluoromethane (CFC 11)	mg/L	0 0005 U	0.0005 U	0 0005 U	0 0005 บ	0 0005 U	0 0005 U	0.0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
1,2,3-Trichloropropane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 ひ	0 0005 U	0 0005 U	0 0005 U	0.0005 U
1,2,4-Trumethylbenzene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0.0005 U	0 0005 U	0.0005 U
1,3,5-Trimethylbenzene	mg/L	0 0005 U	0.0005 U	0 0005 ป	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 ひ	0 0005 U	0 0005 U	0 0005 U	0 000b U
Vuryl acetate	mg/L	_	-	-	-	-	-	-	-	-	-	_	-	-	_
Vutyl hloride	mg/L	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U
m&p-Xylene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	U c000 0
o-Xylene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 ป	0 0005 U	0 0005 U	0 0005 U	0 0005 U
Xylene (total)	mg/L	-	-	-	-	-	_	-	-	_	-		_	-	-

GROUNDWATER DATA SUMMARY VOCS FORMER PLAINWELL INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample L cation		SGWA 1	SGWA 2	SGWA 3	SGWA-4	SGWA-5	SGWB-1	SGWB-2	SGWB-3	SGWB-4	SGWB-5	SGWB-6	SGWB-7	SGWB-8	SGWB-9	SGWB 10	SGWG-1	SGWK 1
Sample D te		4/21/1997	4/21/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997
Sample Typ	Umts																	
Acetone	mg/L	-	_	_	0 01 U	0 01 U	0 OI U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U
Acrylonitril	mg/L	-		_	_		-	-		- -	-	-	-	-	-	-	-	-
Benzene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Brom benzene	mg/L	0 0005 U	0 0005 U	0 0005 U	-	<u>-</u>	-	-	-	-	-	-	-	-	-		_	-
Bromodichloromethane	mg/L	0.0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Bromoform	mg/L	-	-	-	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Bromomethane (Methyl Bromide)	mg/L	_	-	_	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2 B tanon (Methyl Ethyl Keto)	mg/L	-	_	-	0 01 U	0 01 U	0 O1 U	001 U	0 01 U	001 U	0 01 U	001 U	0 01 U	0 01 U	0 01 U	0010	0 01 U	0 01 U
Butylbenzene	mg/L	0 0005 U	0 0005 U	0 0005 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-
tert B tylbenzen	mg/L	0 0005 U	0.0005 U	0 0005 U	-	-	-	-	-	-	-	-	-	-	_		-	-
Carbo disulfid	mg/L	-	-	-	0 002 U	0 0 02 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Carbo tetrachlorid	mg/L	0 000b U	0 0005 U	0 0005 ป	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0.002 U	0 002 U	0.002 ປ	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Chlorobenzene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Chlorobromomethane	mg/L	_	_	-	-	-	-	-	_	-	-	-	-	-	-	_	-	_
Chloroethane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2-Chl roethyl vinyl ethe	mg/L	-	-	-	0 01 U	0.01 U	0 01 U	0 01 U	0.01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U
Chloroform (Trichloromethane)	mg/L	0 0005 U	0 0005 U	0.0005 U	0 002 U	0 002 U	0.002 U	0.002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Chloromethane (Methyl Chloride)	mg/L	0 00005 U	0 0005 U	0 0005 ひ	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2-Chlorotoluene	mg/L	0 0005 U	0 0005 U	0 0005 U	-	-	-	-	-	-	-	-	-	-	-	-	-	_
4-Chlorotoluen	mg/L	0 0005 U	0 0005 U	0 0005 U	_	_	-	-	-	_		-	-	_	_	-	_	_
Cymene (p-Isopropyltoluene)	mg/L	0 0005 U	0 0005 U	0 00005 U	-	-	-	-	-	-	-	-	-	_	_	_	-	_
Dibromochl romethane	mg/L	0.0005 U	0.0005 U	0 0005 U	0 002 U	0.002 U	0 002 U	0 002 U	0.002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Dibromomethane	mg/L	_	_	_	_	_	-	-	-	-	-	-	-	-	_	_	_	-
1,2 Dibromo-3-chloropropane (DBCP)	mg/L	0 001 U	0 001 U	0 001 U	_	-	-	-	_	-	-	_	-	_	_	_	_	
1,2 Dibromoethane (Ethylene Dibromud)	mg/L	0 0005 U	0 0005 U	0 0005 U	-	_	-	-	-	-	-	-	-	-	-	_	-	-
1,2 Dichl robenzene	mg/L	0 0005 U	0 0005 U	0 0005 U	_	-	-	-	-	_	-	-	-	_	_	_	_	_
1,3-Dichlorobenzene	mg/L	0 0005 U	0 0005 U	0 0005 U	_	-	-	-	_	_		-	-	-	_	-	-	-
1,4-Dichlorobenzen	mg/L	0 0005 U	0 0005 U	0 0005 U	-	-	-	-	-	-	-	-	-	_	_	_	-	-
Dichl rodifl oromethane (CFC 12)	mg/L	0 00005 บ	0 0005 U	0 0005 U	_	_	-	_	_	_	_	-	-	-	_	-		_
11 Dichloroethane	mg/L	0 00005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
1,2 Dichloroethane	mg/L	0 00005 U	0.0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
11 Dichloroethene	mg/L	0 0005 U	0.0005 U	0 0005 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0.002 U	0.002 U
cis-1,2 Dichloroethene	mg/L	0 0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
trans-1,2 Dichloroethene	mg/L	0 00005 U	0.0005 U	0 00005 บ	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 ປ	0 002 U	0 002 U
1 1 Dichloropropene	mg/L	_	_	_	-	-	-	-	-	-	_	-	_	_	_	_	-	-
1,2 Dichloropropane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
css-1,2 Dichloropropene	mg/L	-	-	_	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
1,3-Dichloropropan	mg/L	0 0005 U	0 0005 U	0 0005 U	_	_	-	_	_	_	_	_	_	_	_	-	_	_
cus-1,3-Dichloropropene	mg/L	_	_	_	_	-	-	-	-	_	_	_	_	_	-	_	-	_
trans-1,3-Dichloropropene	mg/L	_	_	_	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 0002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2,2-Dichloropropane	mg/L	0 0005 U	0 0005 U	0 0005 U	-	_	_	_	_	_	_	_	_	_	_	-	_	_
Dusopropyl ether	mg/L	0 005 U	0 005 U	0 005 U	-	_	-	-	_	_	-	-	-	-	_		_	_
Ethylbenzen	mg/L	0 0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Hexachlorobutadien	mg/L	0.005 U	0 005 U	0 005 U	_	_	_	_	_	_	_	_	_	_	_	_	-	_
2 Hexanone	mg/L	_	-	_	0 01 U	0.01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U
Isopropylbenzene	mg/L	0 0005 U	0 0005 U	0 0005 U	_	-	-	-	_	_	-	-	_	_	_	_	_	_
• ••	-																	

CRA 56394 (2)

GROUNDWATER DATA SUMMARY VOCS FORMER PLAINWELL INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample Location		SGWA 1	SGWA 2	SGWA 3	SGWA-4	SGWA 5	SGWB 1	SGWB-2	SGWB-3	SGWB-4	SGWB-5	SGWB-6	SGWB-7	SGWB-8	SGWB 9	SGWB 10	SGWG-1	SGWK 1
Sample D te		4/21/1997	4/21/1997	4/22/1997	4/22/1997	4/22/199 7	4/22/1997	4/22/1997	4/22/199 7	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997	4/22/1997
Sample Type	Units																	
Methyl Tert Butyl Ether	mg/L	0 005 U	0 005 U	0.005 U		_	_	_		_	_		_	_	_			
Methylene chlorid	mg/L	0 00005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
4-Methyl 2 Pentanone (Methyl Isobutyl Ketone)	mg/L	-	-	-	001U	001U	001U	0 01 U	001 U	0.01 U	0 01 U	001 U	0 01 U	001 U	0 01 U	0 01 U	001 U	001 U
	mg/L	0.008 U	0 008 U	0 008 U	-	-	0010	0010	0010	0.01 0		0010	0010	0010	0010	-	0010	0010
N phthalene	-	0.0005 U	0 0005 U	0 0005 LJ	_	_	_	-	-	_		_	-	_	_	-	_	_
2 Phenylbutane (sec Butylbenzene)	mg/L	0 00005 U	0 0005 U	0 0005 U	_	_	-	-	_	_	-	_	-	_	_	_	_	_
n-Propylbenzen	mg/L					0 002 U	0 002 U	0 002 U		0.000	0 002 U	-	0 002 U	0 002 U	-	0.000 **		
Styrene	mg/L	-	-	-	0 002 U		0 002 0	0 002 0	0 002 U	0 002 ∪		0 002 U	0 002 0		0 002 U	0 002 U	0 002 U	0 002 U
1 1 1,2 Tetrachioroethane	mg/L		_			-				-					-			
1 1,2,2 Tetrachioroethane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Tetrachloroethene	mg/L	0.0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
T luen	mg/L	0 0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 ປ
1,2,3-Trichlorobenzen	mg/L	0 002 U	0 002 U	0 002 U	-	-	-	-	-	-	-	-	-	-	_	-	-	-
1,2,4-Trichlorobenzen	mg/L	0 002 U	0 002 U	0 002 U	_	-	-	-	-	-		_	_	_	_	-	-	-
111 Trichl roethane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 0002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
1 1.2 Trichloroethane	mg/L	0 0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Trichloroethen	mg/L	0 0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Trichlorofl gromethane (CFC 11)	mg/L	0 0005 U	0 0005 U	0 0005 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
1,2,3-Trichloropropane	mg/L	_		_	_	_	-	-	-	_	-	-	-	-	_	-	_	-
1,2,4-Trimethy Ibenzene	mg/L	0 001 U	0 001 U	0 001 U	-	-	-	-	-	-	-	_	-	_	-	_	-	_
1,3,5-Trimethy Ibenzene	mg/L	0 001 U	0 001 U	0 001 U	_	-	-	-	_	_		-	-		_	-	_	-
V nyl acetate	mg/L	-		_	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Vinyl hlonde	mg/L	0 0002 U	0 0002 U	0 0002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
m&p-Xylene	mg/L	-	_	_	_	-	-	-	_	_	-	_	-	-	_	-	_	_
o-Xylene	mg/L	_	_	_	_	_	-	-	_	_	-	_	_	-	_	_	_	
Xylene (total)	mg/L	0 0005 U	0.0005 U	0 0005 U	0 002 U	0 0002 U	0.002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U

GROUNDWATER DATA SUMMARY VOCs FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Sample Location		TW-6	TW-6	TW-8	TW 9
Sample D t		9/5/2006	9/6/2006	9/6/2006	9/5/2006
Sample Typ	Units	44200	Dupl cat	44200	44200
Sample 13p	4				
Aceton	mg/L	0 02 U	0 02 U	0 02 U	0 02 U
Acryl nitril	mg/L	0 002 U	0 002 U	0 002 U	0 002 U
Benzene	mg/L	0.001 U	0 001 U	0.001 U	0 001 U
Bromobenzene	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
Bromodichloromethane	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
Brom form	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
Bromomethane (Methyl Bromid)	mg/L	0 005 U	0 005 U	0 005 U	0 005 U
2 B tan ne (Methyl Ethyl Ketone)	mg/L	-	~	_	-
n-B tylbenzene	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
tert B tylbenzene	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
Carbon disulfid	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
Carbo tetrachlorid	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
Chlor benzen	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
Chlorobr momethane	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
Chl roethane	mg/L	0 005 U	0.005 U	0 005 U	0 005 U
2-Chloroethyl vmyl ether	mg/L	-	-	-	-
Chl roform (Trichloromethane)	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
Chi romethane (Methyl Chi rid)	mg/L	0 005 U	0 005 U	0 005 U	0 005 U
2-Chlorotoluene	mg/L	-	~	_	_
4-Chlorotoluene	mg/L	-	-	-	-
Cymene (p-lso propy ltol en)	mg/L	-	-	-	-
D bromochi romethane	mg/L	-	~	-	-
Dibrom methan	mg/L	-	-	-	-
1,2 Dibromo-3-chloropropane (DBCP)	mg/L	-	-	-	-
1,2 D bromoethane (Ethylene Dibromide)	mg/L	-	-	-	-
1,2 Dichlorobenzen	mg/L	-	~	_	-
1,3-Dichl robenzen	mg/L	-	-	-	-
1,4-Dı hlorobenzen	mg/L	-	-	-	-
D chlorodifl oromethane (CFC 12)	mg/L	-	-	-	-
11 Dichl roethan	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
12 Di hl roethan	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
11 D hl roethene	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
cis-1,2 Dichloroethene	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
trans-1,2 Dichloroethene	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
11 Dichloropropene	mg/L	-	-	-	-
1,2 Dichloropropane	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
cis-1,2 Dichloropropene	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
1,3-Dichloropropane	mg/L	-	~	-	-
cas-1 3-Dichl ropropene	mg/L	-	-	_	-
trans-1,3-Dichloropropene	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
2.2 Dichloropropan	mg/L	-	-	-	-
Disopr pyl ether	ng/L	-	-		_
Ethylbenzene	mg/L	0 001 U	0.001 U	0 001 U	0 001 U
Hexachl robutadiene	mg/L		~		
2 Hexanone	mg/L	0 005 U	0 005 U	0 005 U	0 005 U
Isopropylbenzen	mg/L	-	-	-	-

CR 56394 (2)

GROUNDWATER DATA SUMMARY VOCS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample L cation		TW-6	TW-6	TW-8	TW 9
Sample Date		9/6/2006	9/6/2006	9/6/2006	9/6/2006
Sample Type	Umts		Duplicate		
Methyl Tert B tyl Ether	mg/L	_	_	_	_
Methylene chlond	mg/L	0 005 U	0 005 U	0 005 U	0 005 U
4-Methyl 2 Pentan ne (Methyl Isobutyl Ketone)	mg/L	0 005 U	0 005 U	0 005 U	0 005 U
N phthalene	mg/L	-	-	-	-
2 Phenylbutane (sec B tylbenzene)	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
n-Propylbenzene	mg/L	_	_	-	-
Styrene	mg/L	0 001 U	0.001 U	0.001 U	0 001 U
1 1 1.2 Tetrachloroethan	mg/L	_	-	-	-
1 1.2.2 Tetrachloroethane	mg/L	0 001 U	0.001 U	0 001 U	0 001 U
Tetrachloroethen	mg/L	0 001 U	0 001 U	0 00038 1	0 001 U
Tlen	mg/L	0 001 U	0 001 U	0 00029 1	0 001 U
1.2.3-Trichlorobenzene	mg/L	_	-		-
1.2.4-Trichl robenzene	mg/L	_	_	_	_
111 Trichloroethane	mg/L	0.001 U	0 001 U	0 001 U	0 001 U
11.2 Trichl roethane	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
Trichloroethen	mg/L	0 001 U	0.001 U	0 001 U	0 001 U
Trichl rofl oromethane (CFC 11)	mg/L	0 001 U	0 001 U	0 001 U	0 001 U
1,2,3-Trichl ropropane	mg/L	_	-	-	-
1,2,4-Trunethylbenzen	mg/L	_	_	_	_
1,3,5-Trimethylbenzene	mg/L	_	_	_	_
Vinyl acetate	mg/L		_	_	_
Vinyl chloride	mg/L	0 0001 U	0 001 U	0 001 U	0 001 U
m&p-Xylene	mg/L	0 002 U	0 002 U	0 00026 1	0.00018 J
o-Xylene	mg/L	0 001 U	0001 U	0 000 U	0.00010 J
Xylene (t tai)	mg/L	0 003 U	0 003 U	0 00126 J	0 00118 J
Ayrene (c am)	g/ L	0.000	0.000	0 00120)	0.00110)

TABLE D.3

GROUNDWATER DATA SUMMARY SVOCs AND PAHS FORMER PLAINWELL INC MILL PROPERTY PLAINWELL MICHIGAN

Sample L cation		PM MWI	PM MW2	PM MW3	PM MW4	PM-MW4	PM MW5	PM MW6	PM MW7	PM MW8	PM MW9	PM MW10	PM-MW11
S mple date		12/16/2008	12/16/2008	12/17/2008	12/17/2008	12/17/2008	12/17/2008	12/16/2008	12/17/2008	12/17/2008	12/16/2008	12/17/2008	12/16/2008
S mple Type	Umits					Duplicat							
Acenaphthene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Acenaphthylene	mg/L	0 002 Ŭ	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Aruline	mg/L	0 002 ひ	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Anthr cen	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Benzidin	mg/L	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 ti U	001 U	០៣ ប	0 01 U	0 01 U
Benzo()anthracene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Benzo()pyrene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Benzo(b)fl ranthene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Benzo(g,h,)perylen	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 ປ	0 002 U	0 002 ປ
Benz (k)fi ranthen	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 ປ	0 002 U	0 002 U
Benz ic cid	mg/L	0 004	0 003	0 004	0 004	0 004	0 003	0 003	0 005	0 003	0 003	0 003	0 006
Benzyl Al h l	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
bis(2-Chl roethoxy)methane	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
bis(2-Chloroethyl)ether	mg/L	0 002 U	0.002 U	0.002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
bis(2 Ethylhexyl)phthalate	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 TJ	0 002 U
4-Bromophenyl phenyl ether	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
B tyl benzylphthalate	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Carbazol	mg/L	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
4-Chloro-3-methylphenol	mg/L	0 002 U	0.002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
4-Chloroandin	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2-Chloronaphthalene	mg/L	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2-Chlorophen I	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
4-Chlorophenyl phenyl ether	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Chrysene	mg/L	0 002 U	0.002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Dibenz(a,h)anthracene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Dibenzofuran	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
1,2 Dichl robenzene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
1,3-Dichl robenzene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
1,4-Dichl robenzene	mg/L	0 002 U	0.002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
3,3 Dı hlorobenzıdı	mg/L	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U
2,4-Dichi rophenol	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Diethyl phthalate	mg/L	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Dimethyl phthalate	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2,4-Dimethylphen I	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
3,4-Dimethylphenol	mg/L	-	_	-	- -	_	-	-	-	.		-	-
Di-n-butylphthalate	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
4,6-Duntro-2 methylphenol	mg/L	0 002 U	0.002 U	0.002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2,4-Dinitrophenol	mg/L	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U
2.4-Dirutrotol ene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2,6-Dinitrot 1 en	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Di -octyl phthalate	mg/L	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U
1,2 Diphenylhydrazine	mg/L	0.002 U	0.002 U	0.002 U	0 002 ປ	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Fluoranthen	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 ป	0 002 U	0 002 U	0 002 C	0 002 U	0 002 U
Fl rene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U
Hexachl robenzene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Hexachl robutadiene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U

CRA 56394 (2)

GROUNDWATER DATA SUMMARY SVOCs AND PAHS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample Location Sample date Sample Type	Umts	PM MWI 12/16/2008	PM MW2 12/16/2008	PM MW3 12/17/2008	PM MW4 12/17/2008	PM MW4 12/17/2008 Duplicate	PM MW5 12/17/2008	PM MW6 12/16/2008	PM MW7 12/17/2008	PM MW8 12/17/2008	PM MW9 12/16/2008	PM MW10 12/17/2008	PM MW11 12/16/2008
Hexachlorocycl pentadiene	mg/L	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Hexachloroethane	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Indeno(1,2,3-cd)pyrene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Isophorone	mg/L	0 002 U	0.002 U	0 002 U	0 002 U	0.002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0.002 U
1 Methylnaphthalene	mg/L	-	-	-	_	-	_	-	-	-	_	_	_
2 Methylnaphthalene	mg/L	0 002 U	0.002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2 Methylphenol	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
4-Methylphenol	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U
Naphthalene	mg/L	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2 Nitroamline	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
3-Nitroaruline	mg/L	0 002 U	0 002 U	0 002 U	0 002 ゼ	0 002 U	0.002 U	0.002 U	0.002 U	0.002 ປັ	0 002 U	0 002 U	0.002 U
4-Nitroanuline	mg/L	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
N trobenzene	mg/L	0 002 U	U 2000	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0.002 ປ	0 002 U	0 002 U	0 002 U
2 N trophenol	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
4-Nitrophenol	mg/L	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U
N-N trosodi-n-propylamine	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 ປ
N-N trosodiphenylamine	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2,2 -oxybis(1-Chloropropan)	mg/L	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Pentachlorophenol	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Phenanthrene	mg/L	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Phenol	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Pyrene	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
1,2,4-Trichlorobenzene	mg/L	0 002 U	0 002 U	0 002 ひ	0 002 U	0 002 U	0 002 U	0 0 02 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2,4,5-Trichlorophenol	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
2.4.6-Trichlorophenol	mg/L	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U

TABLE D 3

GROUNDWATER DATA SUMMARY SVOCS AND PAHS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sampi L cation Sample date		PM MW12 12/16/2008	PM MW12 12/16/2008	SGWA 1 4/21/1997	SGWA 2 4/21/1997	SGWA 3	SGWA-4 4/22/1997	SGWA 5 4/22/1997	SGWB-1 4/22/1997	SGWB-2 4/22/1997	SGWB 3	SGWB-4 4/22/1997	SGWB 5 4/22/1997	SGWB-6 4/22/1997	SGWB-7 4/22/1997
Sample Type	Units		Duplicate												
Acenaphthene	mg/L	0 002 U	0 002 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U
Acenaphthylene	mg/L	0 002 U	0 002 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U
Aniline	mg/L	0 002 U	0 002 U	-	-	-	-	-	-	-	-	-	-	-	-
Anthracene	mg/L	0 002 U	0 002 U	0 0002 U	0 0002 ป	0 0002 U	0 0002 U	0 0002 U	0.0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U
Benzidin	mg/L	0 01 U	0 01 U	-	_	-	-	_	-	-	-		-	-	
Benz ()anthracen	mg/L	0 002 U	0 002 U	0 00001 ປ	0 00001 U	0 00001 U	0 00001 U	0 00001 U	0 00001 U	0 00001 U	0 00001 U	0 00001 U	0 00001 U	0 00001 บ	0 00018
Benz ()pyrene	mg/L	0 002 U	0 002 U	0 000004 U	0 000004 U	0 000004 U	0 000001 U	0 000004 U	0 000004 U	0 000004 U	0 000001 U	0 000004 U	0 000001 U	0 000004 U	0 0002
Benz (b)fil ranthene	mg/L	0 002 U	0 002 U	0 00002 U	0 00002 U	0 00002 U	0 00002 U	0 00002 U	0 00002 U	0 00002 U	0 00002 U	0 00002 U	0 00002 U	0 00002 U	0 00016
Benzo(g.h.)perylen	mg/L	0 002 U	0 002 U	0 0006 U	0 0006 U	0 0006 U	0 0006 U	0 0006 U	0 0006 U	0 0006 U	0 0006 U	0 0006 U	0 0006 U	0 0006 U	0 00034
Benzo(k)fi anthene	mg/L	0 002 U	0 002 U	0 0001 U	0.0001 U	0 0001 U	0 0001 U	0 0001 U	0 00001 U	0 0001 U	0 0001 U	0 0001 U	0 00001 U	0 0000 U	0 00008
Benzo acid	mg/L	0 005	0.005	-	-	-	-	-	-	-	-	-	-	-	-
Benzyl Alc hol	mg/L	0 002 U	0 002 1	_	_	_	_	_	_	_	_	_	_	_	_
bis(2-Chloroeth xy)methan	mg/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	_	_		-
bis(2-Chl roethyl)ether	mg/L	0.002 U	0 002 U	_	_	_	_	_	_	_	_	_	_	_	_
bis(2 Ethylhexyl)phthal te	mg/L	0 002 U	0.003	_	_	_	_	_	_	_	-	_	_	_	_
4-Bromophenyl phenyl ether	mg/L	0 002 U	0 002 U	_	_	_	_	_	_		_	_	_	_	_
Butyl benzylphthalate	ng/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	_	_	_	_
Carbazol	mg/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	_	_	_	-
4-Chl ro-3-methylphenol	mg/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	_	_	_	_
4-Chloroamline	mg/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	_	_	_	_
2-Chloronaphthalene	mg/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	_	_	_	_
2-Chlorophenol	mg/L	0 002 U	0 002 U	_	_	-	_	_	Ξ	Ξ	_	_	_	_	_
4-Chlorophenyl phenyl ether	mg/L	0 002 U	0 002 U	-	-	-	_	_	-	-	-	_	_	_	_
Chrysene Chrysene	mg/L mg/L	0 002 U	0 002 U	0 000005 U	0 000005 U	0 00005 U	0 00005 U	0 00005 U	0 000005 U	0 00005 U	0 00005 U	0 00005 U	0.00005 U	0 000005 U	0 00049
Dibenz(a,h)anthracene	mg/L	0 002 U	0.002 U	0 00002 U	0 00002 U	0 00002 U	0 00003 U	0.00002 U	0 000002 U	0 00002 U	0 00002 U	0 000002 U	0.00002 U	0 000002 U	0 00009
Dibenzofuran	mg/L	0 002 U	0.002 U	-	-	-	-	-	-	-	-	-	-	-	-
1,2 Dichlorobenzen		0 002 U	0 002 U	_	_	_	_	_	_	_	_	-	-	_	-
1,3-Dichlorobenzen	mg/L mg/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	_	-	_	_
1,4-Dichl robenzene	mg/L	0 002 U	0 002 U		_	_	_	_	_	_	_	-	-	_	_
3,3 -Dichlorobenzidine	mg/L	0 004 U	0 004 U	_	_	_	_	_	-	_	_	_	_		-
•		0 002 U	0 002 U	_	_	_	_	_	_	_		_	_	_	_
2.4-Dichlorophen 1	mg/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	_	_	_	_
Diethyl phthalate	mg/L	0 002 U	0 002 U	_	_	_	-	_	_	_	_	_	_	-	-
Dimethyl phthalate 2,4-Dimethyl phenol	mg/L mg/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	_	_	_	_
3,4-Dimethylphenol		-	-	_	_	_	-	_	_	_			-	_	_
Di-n-butylphthalate	mg/L	0 002 U	0 002 U		_	_	_		_	_	_	_	_	_	_
	mg/L mg/L	0 002 U	0002 U	_		_			_	_			_	_	-
4,6-Dirutro-2 methylphenol 2,4-Dirutrophenol	mg/L	0 004 U	0 004 U	_		_	_	_	_	_		_	_	-	-
2.4-Dinitrophenoi 2.4-Dinitrotoluene	mg/L	0 002 U	0 002 U	-	_	-	_	_	_	_		_	_	_	_
2.6-Dinitrotoluene	mg/L mg/L	0 002 U	0 002 U	-	_	_	_	_	_	_	_	_	_	_	_
Di n-octyl phthalate	mg/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	_	-	_	_
• •	mg/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	_	_	_	_
1,2 Diphenylhydrazine Fl ranthen	mg/L	0 002 U	0 002 U	0 001 U	0.001 U	0 001 U	0 001 U	0.001 U	0.001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 0011
	mg/L	0 002 U	0 002 U	0 001 U	0.001 U	0 001 U	0 001 U	0.001 U	0.001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U
Fl orene	mg/L	0 002 U	0 002 U	- 00010	90010	0 001 0		- 00010	00010	00010	0 001 0				0 001 0
Hexachi robenzene	mg/L			-	-	-	_	-	-	-	-	-	-	-	
Hexachl robutad en	mg/L	0 002 U	0 002 U	_	-	_	-	-	_	_	-	-	_	_	

CRA 56394 (2)

GROUNDWATER DATA SUMMARY SVOCS AND PAHS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample Location Sample date Sample Type	Units	PM-MW12 12/16/2008	PM MW12 12/16/2008 Duplicate	SGWA 1 4/21/1997	SGWA 2 4/21/1997	SGWA-3 4/22/1997	SGWA-4 4/22/1997	SGWA 5 4/22/1997	SGWB-1 4/22/1997	SGWB-2 4/22/1 99 7	SGWB-3 4/22/1997	SGWB-4 4/22/1997	SGWB-5 4/22/1997	SGWB-6 4/22/1997	SGWB-7 4/ 22 /199 7
Hexachlorocyclopentadien	mg/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	-	-	_	-
Hexachl roethane	mg/L	0 002 U	0 002 U	-	-	-	-	_	-	-	-	-	_	-	
Indeno(1,2,3-cd)pyrene	ng/L	0 002 U	0 002 U	0.0004 U	0 0004 U	0 0004 U	0 0004 U	0 0004 U	0 0004 U	0 0004 U	0 0004 U	0 0004 U	0 0004 U	0 0004 U	0 0004 U
Isophoro	mg/L	0 002 U	0 002 U												
1 Methylnaphthalene	mg/L	-	-	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U						
2 Methylnaphthalene	mg/L	0 002 U	0 002 U	0 003 U	0 003 U	0.003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U
2 Methylphenol	mg/L	0 002 U	0 002 U	-	_	-	-	-	-	-	-	-	_		
4-Methylphenol	mg/L	0 002 U	0 002 U												
Naphthalene	mg/L	0 002 U	0 002 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U
2 N troansline	mg/L	0 002 U	0 002 U	-	-	-	-	-	-	-	-	-	-	-	-
3-Nitroaniline	ing/L	0 002 U	0 002 U	-	_	-	_	_	-	_	_	-	-	_	-
4-Nitroanilme	mg/L	0 002 U	0 002 U	-	-	-	-	-	-	-		-	-	-	_
Nitrobenzen	ing/L	0 002 U	0 002 U	-	_	-	-	-	-	-	_	-	_	-	_
2 Nitrophenol	ing/L	0 002 U	0 002 U	-	-	-	_	_	-	-	-	-	_	_	
4-N'trophen l	mg/L	0.004 U	0 004 U	-	_	_	-	_	-	-	-	-		_	
N N trosodi n-propylamine	mg/L	0 002 U	0 002 U	-	_	-	-	_	-	-	-	-	-		_
N N trosodiphenylamine	mg/L	0 002 U	0 002 U	-	_	_	_	-	-	-	_	-	_	-	
2,2 -oxybis(1-Chloropropane)	mg/L	0 002 U	0 002 U	-	-	-	-	-	-	-	-	-	_	-	-
Pentachlorophenol	ng/L	0 002 U	0 002 U	-	_	-	-	-	-	-	-	-	-	_	
Phenanthrene	mg/L	0 002 U	0 002 U	0 0003 U	0 0003 U	0 0003 U	0 0003 U	0 0003 U	0 0003 U	0 0003 U	0 0003 U	0 0003 U	0 0003 U	0 0003 U	0 0003 U
Phenol	mg/L	0 002 U	0 002 U	-	_	_	-	-	-	-	_	_	-		_
Pyren	mg/L	0 002 U	0 002 U	0 001 U	0 001 U	U 100 0	0 001 U	0.001 U	0.001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U
1,2,4-Trichl robenzene	mg/L	0 002 ひ	0 002 U	-	-	_	-	-	-	-	-	_	_	_	-
2,4,5-Trichlorophenol	mg/L	0 002 ປ	0 002 U	-	-	_	-	-	-	-		-	_	-	-
2,4 6-Trichlorophenol	mg/L	0 002 U	0 002 U	_	_	_	_	_	_	_	_	-	-		-

TABLE D 3

GROUNDWATER DATA SUMMARY SVOCS AND PAHS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL MICHIGAN

Sampl L cation		SGWB-8	SGWB-9	SGWB-10	SGWG-1	SGWK 1	TW-5	TW-6	TW 7	TW 7	TW-8	TW 9
S mple date		4/22/1997	4/22/19 9 7	4/22/1997	4/22/1997	4/22/1997	9/6/2006	9/6/2006	9/5/2006	9/5/2006	9/6/2006	9/6/2006
Sample Type	Units									Duplicate		
Acenaphthene	mg/L	0 005 U	0.005 U	0.005 U	0 005 U	0 005 U	0.005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 000066 J
Acenaphthylen	mg/L	0 004 U	0 004 U	0 004 U	0 004 U	0 004 U	0 000041 J	0 00o U	0 005 U	0 005 U	0 005 U	0 005 U
Aniline	mg/L	_	-	-	_		-	-	_	_	-	_
A thracen	mg/L	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 000054 J	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U
Benzidine	mg/L	_	-	_	_	_	_		_	_		_
Benzo()anthracen	mg/L	0.00001 U	0 00001 U	0.00001 U	0.00001 U	0 00001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U
Benzo()pyrene	mg/L	0 000004 U	0 000004 U	0 000004 U	0 000004 U	0 000004 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U
Benzo(b)fluoranthene	mg/L	0 00002 U	0 00002 U	0.00002 U	0.00002 U	0 00002 U	0 001 U	0 001 U	0 001 U	0 001 ป	0 001 U	0 001 U
Benz (g.h.)perylene	mg/L	0 0006 U	0 0006 U	0 0006 U	0 0006 U	0 0006 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U
Benzo(k)fl ranthen	mg/L	0 0001 U	0 0001 U	0 0001 U	0 0001 U	0 0001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U
Benzo cid	mg/L	_	_	_	_	_	_	_	_	_	_	
Benzyl Alcohol	mg/L	_	-	_	_	_	_	-		_	_	_
bis(2-Chloroethoxy)methane	mg/L	-	_	_	_	_	_	_	_	-	_	_
bis(2-Chloroethyl)ether	mg/L	_	-	_	_	_	_	_	_	_	_	_
bis(2 Ethylhexyl)phthalate	mg/L	_	_	_	_	_		_	_	_	_	_
4-Bromophenyl phenyl ether	mg/L	_	-	_	_	_	_	_	_	_	_	_
B tyl benzylphthalate	mg/L	_	_	_	_	_	_	_	_	_	_	_
Carbazol	mg/L	-	_	_	_	_	_	_	_	_	_	_
4-Chloro-3-methylphen 1	mg/L	_		_	_	_	0 005 U	_	0 005 U	0 005 U	_	_
4-Chl roanilin	mg/L	_	_	_	_	_	-	_	-	-	_	
2-Chioronaphthalene	mg/L	_	_	_	_	_	_	_	_	_	_	_
2-Chl rophenol	mg/L	_	_	_	_	_	0 01 U	_	901 U	0 01 U	_	_
4-Chlorophenyl phenyl ether	mg/L									00.0		
Chrysene	mg/L	0 00005 U	0 00005 ป	0 00005 U	0 00005 U	0 00005 บ	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U
D benz(a,h)anthracen	mg/L	0 00002 U	0 00002 U	0 00002 U	0 00003 U	0 00002 U	0 002 U	0.002 U	0 002 U	0 002 U	0 002 U	0 002 U
Dibenzofuran	mg/L	-	_	-	_	-	-	-	-	-	-	_
1,2 Dichl robenzene	mg/L	_	_	_	_	-	_	_	_	_	_	_
1,3-Dichlorobenzene	mg/L	_	_	_	_	_	_	-	_	_	_	-
1,4-Dichlorobenzen	mg/L	_	_	_	_	_	_	-	_	_	_	_
3.3 Dichlorobenzidine	mg/L	_	_	_	-	_	=	-	-	_	_	_
2,4-Di hl rophenol	mg/L	_	_	-	_	_	0 01 U	_	0 OI U	0 01 U	_	
Di thyl phthalate	mg/L	_	_	_	_	_	-	_	-	-	-	_
Dimethyl phthalate	mg/L	_	_	_	_	_	_	_	_	_	_	_
2,4-Dimethylphen 1	mg/L	_	_	_	_	_	0 005 U	-	0 005 U	0 005 U	_	_
3,4-Dimethylphen I	mg/L	_	_	_	_	_	0 02 U	002U	0 002 U	0 02 U	_	_
Di butylphthalate	mg/L	_	_		_	_	_	-	_	-	_	_
4 6-Dinitro-2 methylphenol	mg/L	_	_	_	_	_	0 02 U	_	0 02 U	0 02 U	_	_
2.4-Diretrophenol	mg/L	_	-	-	_	_	0.025 U	_	0.025 U	0 025 U		_
2.4-Dinitrotoluene	mg/L	-	-	-	-	_	_	Ξ	-	-	_	_
2.6-Dirutrotol ene	mg/L	_	_	-	_	_	_	_	_	-	_	_
·	mg/L	_	-	-	_	_	_	_	_		_	_
Di n-octyl phthalate	mg/L	_	_	-	-	-	-	-	_	-	-	-
1,2 Diphenylhydrazine	mg/L	0.001 U	0 001 U	0 001 U	0 001 U		0 00011 J	0 001 U	0 001 U	0 001 U		0 00006 J
Fl ranthene	mg/L	0.001 U	0 001 U	0 001 U	0 001 U	0 001 U	-	0 001 U	0 005 U	0 001 U	0 001 U 0 005 U	•
FI rene	mg/L		0.001.0	0.001.0	O OUT O	0 001 U	0 000034 J	UUUSU	UUUSU		0 000 0	0 005 U
Hexachlorobenzene	mg/L	-	_	_	_	_	-	-	_	-	-	-
Hexachl butadien	mg/L	_	_	-	-	-	-	-	-	-	-	-

CRA 56394 (2)

GROUNDWATER DATA SUMMARY SVOCS AND PAHS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample L cation Sample date Sample Typ	Umts	SGWB-8 4/22/1997	SGWB-9 4/22/199 7	SGWB-10 4/22/199 7	SGWG-1 4/22/1997	SGWK 1 4/22/1997	TW 5 9/6/2006	TW-6 9/6/2006	TW 7 9/5/2006	TW 7 3/5/2006 Duplicate	TW-8 9/6/2006	TW 9 9/5/2006
Hexachl rocyclopentachene	mg/L	_	_	_	_	-	-	-	-		_	-
Hexachloroethane	mg/L	-	_	_	_	_	-	-	-	-	_	
Indeno(1,2,3-cd)pyrene	mg/L	0 0004 U	0 0004 U	0 0004 U	0.0004 U	0 0004 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U	0 002 U
Isophoro	mg/L											
1 Methylnaphthalene	mg/L	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	-	_	_	_	-	_
2 Methylnaphthalen	mg/L	0 003 U	0 003 U	0 003 U	0 003 U	0 003 U	0 000059 J	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U
2-Methylphenol	mg/L	-	_	_	_	-	0 01 U	-	0 01 U	0.01 U	_	
4-Methylphenol	mg/L											
N phthalene	mg/L	0 003 U	0 003 U	0 0003 U	0 003 U	0 003 U	0 000076 J	0 000034 J	0 000033 J	0 000026 J	0 000055 J	0 000028 J
2 N troanilme	mg/L	_	_	-	_	-	_	-	-		_	_
3-N troanilin	mg/L	_	_	_	_	-	-	-	-	-	-	
4-N troaniline	mg/L	_	_	-	-	-	_	-	-	_	_	_
N trobenzene	mg/L	-	-	-	-	-	_	-	-	_	-	-
2 N trophen I	mg/L	-	_	_	_	-	0.005 U	-	0 005 U	0 005 U	-	-
4-N trophenol	mg/L	_	_	_	_	-	0 02 U	-	0 025 U	0 025 U	_	_
N N trosodi-n-propylamine	mg/L	_	-	_	-	-	-	_	-	_	_	-
N N trosodiphenylamine	mg/L	_	_	_	-	-	_	_	-	-	_	-
2,2 -oxybis(1-Chloropropane)	mg/L	-	-	-	-	_	-	-	_	_	_	_
Pentachlorophenol	mg/L	-	-	_	-	_	0 001 U	-	0 001 U	0 001 U	_	
Phenanthrene	mg/L	0 0003 U	0 0003 U	0 0003 U	0 0003 U	0 0003 U	0 00031 J	0 002 U	0 002 U	0 002 U	0 002 U	0 000076 J
Phenol	mg/L	_	_	-	-	-	0 005 U	-	0 005 U	0 005 U	-	_
Pyrene	mg/L	0 001 U	0 001 U	0 001 U	0 001 U	0 001 U	0 000074)	0 005 U	0 001 U	0 001 U	0 005 U	0 000045 J
1,2,4-Trichlorobenzene	mg/L	_	_	_	-	_	_	-	_	-	_	-
2.4.5-Trichlorophenol	mg/L	_	_	-	_	_	0 005 U	_	0 005 U	0 005 U	_	_
2,4 6-Trichlorophenol	mg/L	-	-	_	-	_	0 004 U	-	0 004 U	0 004 U	-	_

TABLE D 4

GROUNDWATER DATA SUMMARY PCBs FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample Location Sample D t		PM-MW1 12/16/2008	PM MW2 12/16/2008	PM MW3 12/17/2008	PM MW4 12/17/2008	PM MW4 12/17/2008	PM MW5 12/17/2008	PM-MW6 12/16/2008	PM MW7 12/17/2008	PM MW8 12/17/2008	PM MW9 12/16/2008	PM MW10 12/17/2008
Sample Typ						Duplicate				_,_,_		
	Umts											
PCBs												
Aroclor 1016 (PCB-1016)	mg/L	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U
Aroclor 1221 (PCB-1221)	mg/L	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U
Aroclor 1232 (PCB-1232)	mg/L	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 G002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U
Aroclor 1242 (PCB-1242)	mg/L	0.0002 U	0 0002 U	0 0002 U	0 0002 U	0.0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U
Aroclor 1248 (PCB-1248)	mg/L	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 ປ	0 0002 U					
Aroclor-1254 (PCB-1254)	mg/L	0 0002 U	0 0002 U	0 0002 U	0.0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U
Aroclor 1260 (PCB-1260)	mg/L	0 0002 U	0 0002 び	0 0002 U								
Total PCBs	mg/L	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U

GROUNDWATER DATA SUMMARY PCBs FORMER PLAINWELL INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample L. cation Sample D. te Sample Type		PM MW11 12/16/2008	PM MW12 12/16/2008	PM MW12 12/16/2008 Duplicate	TW 3 9/6/2006	TW 3 9/6/2006 Duplicate	TW-6 9/6/200 6
	Umts						
PCBs							
Aroclo 1016 (PCB-1016)	mg/L	0 0002 U	0 0002 U	0 0002 U	_	_	_
Aroclor-1221 (PCB-1221)	mg∕L	0 0002 U	0 0002 U	0 0002 び	_	_	
Arocior 1232 (PCB-1232)	mg/L	0 0002 U	0 0002 U	0 0002 U	_	_	_
Aroclor-1242 (PCB-1242)	mg/L	0 0002 U	0 0002 U	0 0002 U	_	_	
Arocl 1248 (PCB-1248)	mg/L	0 0002 U	0 0002 U	0.0002 U	-	-	
Arocl r-1254 (PCB-1254)	mg/L	0 0002 U	0 0002 U	0 0002 U	-	~	_
Aroclor-1260 (PCB-1260)	mg/L	0 0002 U	0 0002 U	0 0002 U	_	-	-
Total PCBs	mg/L	0 0002 U	0 0002 U	0 0002 U	-	_	_

GROUNDWATER DATA SUMMARY INORGANICS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

S mple L cation S mple D t S mple Type	Umis	PM MWI 12/16/2008	PM MW2 12/16/2008	PM MW3 12/17/2008	PM MW4 12/17/2008	PM MW4 12/17/2008 Duplicate	PM-MW5 12/17/2008	PM-MW6 12/16/2008	PM MW7 12/17/2008	PM MW8 12/17/2008	PM MW9 12/16/2008	PM MW10 12/17/2008	PM-MW11 12/16/2008	PM MW12 12/16/2008	PM MW12 12/16/2008 Duplicate	SGWA 1 4/21/1997
Aluminum	mg/L	0 023	0 028	0.062**	0 02	0 022	0 013	0 031	0 038	0 024	0 019	0 018	0 018	0 018	0 026	_
Antım v	mg/L	0 0005 U	0.0006	0 0051	0 0015	0 0015	0 0007	0 0005 U	0 0005 U	0 0005 U	0 000o U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	_
Arsenic	mg/L	0 0009	0.003	0 0029	0.0009	0 0009	0 003	0 0005	0.0131**	0 0012	0 0005	0 0014	0.0047	0.0113	0.0115	_
Barrum	mg/L	0.064	0.068	0 118	0 064	0 064	0 179	0 093	0 313	0 098	0 124	0.09	0.068	0 046	0 046	_
Beryllium	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0.0005 ป	0 0005 U	0.0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	_
Cadmium	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 ປ	0 0005 U	0 0005 U	_
Calcium	mg/L	68 4	67 6	92.6	<i>7</i> 73	80 6	92.1	70 6	92.6	93 2	72.2	112	110	320	317	-
Chr muum T tal	mg/L	0 0005 U	0 0005 U	0 0007	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005	0 0005 U	0 0005 U	0 0005 U	_
C balt	mg/L	0 0005 U	0 0005 U	0 0008	0 0005	0 0006	0 0006	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0013	0 0005 U	0 0008	0 001	_
C pper	mg/L	0 0006	0 0008	0 0042	0 004	0 0041	0 001	0 0006	0 0005 U	0 0005	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	_
Iron	mg/L	0 055	0 084	0.28	0 058	0 039	0 24	01	1.4**	0.22	0 043	0 15	3.3	35 ⁴⁰	33**	_
Lead	mg/L	0 0005 U	0 0005 U	0.0059*	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 005 U
Magnesium Manganese	mg/L mg/L	17.3 0 005	16 7 0.329**	19 4 0.538**	17 7 0.535**	18 2 0.542**	19 6 1 04 ⁴⁸	18 <i>7</i> 0 005	21 2.57**	17 7 0.484 ***	18 7 0.318**	27.2 1.21 ^{ao}	24 1 0.665**	26 8 2.83**	26 2.92**	-
Mercury	mg/L	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 ປ	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	0 0002 U	_
Mercury	mg/L	0 000001 U	0.0000018	0.0000324	0.0000197*	0.00003	0.0000057°	0 000001 U	0.0000103	0 000001 U	0 0000011	0 0000012	0 000001 U	0 000001 U	0 000001 U	_
Nickel	_	0 0005	0 0007	0.0012	0.0011	0 001	0 001	0 0005	0 0009	0 0008	0 0009	0 002	0 0005	0 00007	0 001	_
Potassium	mg/L mg/L	2.82	4.24	4 13	2.86	2.98	2.93	2.65	2.57	3 49	2.4	2.59	3 69	3 12	309	_
Selenium	mg/L	0 0005 U	0 0005 U	0 0009	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	_
Sil er	mg/L	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	_
Sod um	mg/L	47.6	43.7	173	191	198	30.2	79	28.3	28.3	102	28	456	21 6	20 8	_
Thallium	mg/L	0 0005 U	0 0005 ປ	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 บ	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	-
Vanad um	mg/L	0 0005 U	0 0005 U	0 0006	0 0005 U	0 000s U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	0 0005 U	_
Z nc	mg/L	0 01 17	0 01 U	0 01 17	0011	001 U	0 01 U	0 01 U	0 01 U	0 or n	0 01 U	0 01 U	001 U	0 01 U	0 01 U	-
Cy nid	mg/L	0 01 U	0 01 U	0 01 U	0 01 U	omu	0.01c	0 01 U	0.01c	0 OT U	0010	0.01	0 01	0 01 U	0.01	-

GROUNDWATER DATA SUMMARY INORGANICS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample Location Sample D te Sample Type	. Timbe	SGWA 2 4/21/1997	SGWA-3 4/22/1997	SGWA-4 4/22/1997	SGWA-5 4/22/1997	SGWB-1 4/22/1997	SGWB-2 4/22/1997	SGWB-3 4/22/1997	SGWB-4 4/22/1997	SGWB-5 4/22/1997	SGWB-6 4/22/1997	SGWB-7 4/22/1997	SGWB-8 4/22/1997	SGWB-9 4/22/1997	SGWB-10 4/22/1997	SGWG-1 4/22/1997	SGWK 1 4/22/1997	TW 3 9/6/2006	TW 3 9/6/2006 Duplicate	TW-5 9/6/2006
	Umts																			
Aluminum	mg/L	_	_	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Antimony	mg/L	-	-	_	_	-	_	-	_	_		_	_	_	_	_	_	_	_	_
Arsenic	mg/L	_	_	0 05 U	0 050 U	0 050 U	0 050 U	0 050 U	0 050 U	0 050 U	0 050 U	0 050 U	0 025	0 026**	0 00047 J					
Barrum	mg/L	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	-	_
Beryllium	mg/L	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-
Cadmium	mg/L	_	-	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	001 U	0 010 U	0.01	0 010 U	0 010 U	0 010 U	0 010 U	0 010 U	0 010 U	0 000074 J	0 00011 J	0 0002 U
Calcium	mg/L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_
Chromum Total	mg/L	_	_	0 01	0.02°	0 01	0 01	0.02*	0.01	0 01	0 01	0 01	0 01	0 01	0.02	0 01	0 01	0 001 U	0 001 U	0 001 U
Cobalt	mg/L	-	_	_	_	_	_	-	_	_	-	_	_	_	-	_	_	_	_	_
Copper	mg/L	-	_	0 05 U	0 05 U	0 05 U	0 05 U	0 05 U	0.05 U	0 050 U	0 050 U	0 050 U	0 050 U	0 050 U	0 050 U	0 050 U	0 050 U	0 00065 J	0 00071 J	0 00080 J
Iro	mg/L	_	_	_	-	-	_	_	_	-	_	-	_	_	-	_	_	-		_
Lead	mg/L	0 005 U	0 00o U	0 005 U	0 005 U	0 005 U	0 005 U	0 005 U	0 0005 ປ	0 0050 U	0 0050 U	0 0050 U	0 0050 U	0.0050 U	0 0050 U	0 0050 U	0 0050 U	0 00062 1	0 00063 T	0 00067 J
Magnesium	mg/L	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	<u>-</u> '	′	_ ^
Manganese	mg/L	_	-	_	_	_	_	_				_	_	_	_		_	_	_	_
Mercury	mg/L	_	_	0 001 U	0 0010 U	0 0010 U	0 0010 U	0 0010 U	0 0010 U	0 0010 U	0 0010 U	0 0010 U	0 0002 U	0 00020 U	0 0002 U					
Mercury	mg/L	_	_	-	_	_	_	-	_	_		_	_	_	_	_	_	-	-	-
Nickel	mg/L	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_		_
P tass um	mg/L	_	_	_	_	_	_		_	-	-	_	_	_	_	_	_	_	_	_
Selenium	mg/L	_	_	001 U	0 01 U	0 01 U	0 01 U	0 01 U	0 01 U	0 10 U	0 10 U	0 10 U	0 10 U	0 10 U	0 10 U	0 10 U	0 10 U	0 001 U	0 0010 U	0 001 U
Sil er	mg/L	_	_	_	_	_	_	-	_	_	_	-	_	_	_	_	_	_	-	-
Sod um	mg/L	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-
Thallium	mg/L	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Vanadrum	mg/L	_	_	_	_	_	_	-	_	_	-	_	-	-	_	-	-	_	_	_
Zinc	mg/L		-	0.5 U	0.50 U	0.50 U	0 50 U	0.50 U	0.50 U	0.50 U	0 50 U	0.50 U	0 0076 J	0 O1 1 J	0 013 J					
Cvanid	mg/L	_	_	_	_	_	_	_	_		_	_	_	_	_	_			_	_

GROUNDWATER DATA SUMMARY INORGANICS FORMER PLAINWELL, INC MILL PROPERTY PLAINWELL, MICHIGAN

Sample L cation Sample D t		TW-6 9/6/2006	TW 7 9/6/2006	TW-8 9/6/2006	TW 9 9/6/2006
S mple Typ	Units				
Aluminum	mg/L	_		_	_
Antimony	mg/L	_	_	_	_
Arsenic	mg/L	0 001 U	0 0037	0 0022	0 0019
Barrum	mg/L	_	_	_	_
Beryllium	mg/L	_	_	_	_
Cadmium	mg/L	0 00020 U	0 0002 U	0 00046	0 00053
Calcium	mg/L	_	_	_	_ -
Chromrum T tal	mg/L	0 0010 U	0 0010 U	0 001 U	0 001 U
Cobalt	mg/L	-	-	-	-
Coppe	mg/L	0 00095 J	0 0044	0.026	0.022
Iro	mg/L	_	_	_	_
Lead	mg/L	0 00064 J	0 0034	0 0054**	0.021
M gnesium	mg/L	_	_	_	_
Manganese	mg/L	-	-	_	_
Mercury	mg/L	0 0002 U	0 000037 J	0.00021	0.00069
Mercury	mg/L	_	_	_	_
N ckel	mg/L	_	_	_	_
Potassium	mg/L	_	_	_	_
Selenium	mg/L	0 00096 J	0 001 U	0 001 U	0 001 U
Sil er	mg/L	_	-	-	-
Sodium	mg/L	_	-	_	-
Thallium	mg/L	-	-	-	_
Vanad um	mg/L	-	-	-	_
Zinc	mg/L	0 0065 J	0 011 J	0 05	0.18
Cyanid	mg/L		_	-	_